DROPLET FEEDBACK ON VAPOR IN A WARM CLOUD

2009 ◽  
Vol 23 (28n29) ◽  
pp. 5434-5443 ◽  
Author(s):  
ANTONIO CELANI ◽  
ANDREA MAZZINO ◽  
MARCO TIZZI

A new model to study the effect of turbulence on the cloud droplets in the condensation phase is proposed and its behavior investigated by direct numerical simulations. The model is a generalization of the one by Celani, Mazzino, Tizzi, New J. Phys.10, 075021 (2008), where the droplet feedback on vapor is now explicitly taken into account. Physically, it amounts to considering the fact that when a cloud droplet increases its size, vapor is subtracted from the ambient with the net result of a local reduction in the supersaturation field. It is shown how this effect plays to reduce the broadening of droplet size spectra in the condensation stage and thus to produce results in closer agreement with observations.

2012 ◽  
Vol 5 (9) ◽  
pp. 2237-2260 ◽  
Author(s):  
J. K. Spiegel ◽  
P. Zieger ◽  
N. Bukowiecki ◽  
E. Hammer ◽  
E. Weingartner ◽  
...  

Abstract. Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the error analysis of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of the Mie theory. We deduced error assumptions and proposed a new method on how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we summarized corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We showed that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the new stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient wind speeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. Consequently, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions.


2020 ◽  
Vol 37 (9) ◽  
pp. 1539-1550 ◽  
Author(s):  
Fang-Fang Li ◽  
Ying-Hui Jia ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractSound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.


2012 ◽  
Vol 5 (3) ◽  
pp. 3333-3393 ◽  
Author(s):  
J. K. Spiegel ◽  
P. Zieger ◽  
N. Bukowiecki ◽  
E. Hammer ◽  
E. Weingartner ◽  
...  

Abstract. Droplet size spectra measurements are crucial to obtain a quantitative microphysical description of clouds and fog. However, cloud droplet size measurements are subject to various uncertainties. This work focuses on the evaluation of two key measurement uncertainties arising during cloud droplet size measurements with a conventional droplet size spectrometer (FM-100): first, we addressed the precision with which droplets can be sized with the FM-100 on the basis of Mie theory. We deduced error assumptions and proposed how to correct measured size distributions for these errors by redistributing the measured droplet size distribution using a stochastic approach. Second, based on a literature study, we derived corrections for particle losses during sampling with the FM-100. We applied both corrections to cloud droplet size spectra measured at the high alpine site Jungfraujoch for a temperature range from 0 °C to 11 °C. We show that Mie scattering led to spikes in the droplet size distributions using the default sizing procedure, while the stochastic approach reproduced the ambient size distribution adequately. A detailed analysis of the FM-100 sampling efficiency revealed that particle losses were typically below 10% for droplet diameters up to 10 μm. For larger droplets, particle losses can increase up to 90% for the largest droplets of 50 μm at ambient windspeeds below 4.4 m s−1 and even to >90% for larger angles between the instrument orientation and the wind vector (sampling angle) at higher wind speeds. Comparisons of the FM-100 to other reference instruments revealed that the total liquid water content (LWC) measured by the FM-100 was more sensitive to particle losses than to re-sizing based on Mie scattering, while the total number concentration was only marginally influenced by particle losses. As a consequence, for further LWC measurements with the FM-100 we strongly recommend to consider (1) the error arising due to Mie scattering, and (2) the particle losses, especially for larger droplets depending on the set-up and wind conditions.


2017 ◽  
Author(s):  
Fan Yang ◽  
Pavlos Kollias ◽  
Raymond A. Shaw ◽  
Andrew M. Vogelmann

Abstract. Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995). The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.


2021 ◽  
Vol 21 (16) ◽  
pp. 12317-12329
Author(s):  
Bipin Kumar ◽  
Rahul Ranjan ◽  
Man-Kong Yau ◽  
Sudarsan Bera ◽  
Suryachandra A. Rao

Abstract. Turbulent mixing of dry air affects the evolution of the cloud droplet size spectrum via various mechanisms. In a turbulent cloud, high- and low-vorticity regions coexist, and inertial clustering of cloud droplets can occur in low-vorticity regions. The nonuniformity in the spatial distribution of the size and in the number of droplets, variable vertical velocity in vortical turbulent structures, and dilution by entrainment/mixing may result in spatial supersaturation variability, which affects the evolution of the cloud droplet size spectrum via condensation and evaporation processes. To untangle the processes involved in mixing phenomena, a 3D direct numerical simulation of turbulent mixing followed by droplet evaporation/condensation in a submeter-sized cubed domain consisting of a large number of droplets was performed in this study. The analysis focused on the thermodynamic and microphysical characteristics of the droplets and the flow in high- and low-vorticity regions. The impact of vorticity generation in turbulent flows on mixing and cloud microphysics is illustrated.


2021 ◽  
Author(s):  
Bipin Kumar ◽  
Rahul Ranjan ◽  
Man-Kong Yau ◽  
Sudarsan Bera ◽  
Suryachadra A. Rao

Abstract. Turbulent mixing of dry air affects evolution of cloud droplet size spectrum through various mechanisms. In a turbulent cloud, high and low vorticity regions coexist and inertial clustering of cloud droplets can occur in a low vorticity region. The non-uniformity in spatial distribution of size and number of droplets, variable vertical velocity in vortical turbulent structures, and dilution by entrainment/mixing may result in spatial supersaturation variability, which affects the evolution of the cloud droplet size spectrum by condensation and evaporation processes. To untangle the processes involved in mixing phenomena, a direct numerical simulation (DNS) of turbulent-mixing followed by droplet evaporation/condensation in a submeter-cubed-sized domain with a large number of droplets is performed in this study. Analysis focused on the thermodynamic and microphysical characteristics of the droplets and flow in high and low vorticity regions. The impact of vorticity production in turbulent flows on mixing and cloud microphysics is illustrated.


Sign in / Sign up

Export Citation Format

Share Document