Mechanism of Cloud Droplet Motion under Sound Wave Actions

2020 ◽  
Vol 37 (9) ◽  
pp. 1539-1550 ◽  
Author(s):  
Fang-Fang Li ◽  
Ying-Hui Jia ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractSound waves have proven to be effective in promoting the interaction and aggregation of droplets. It is necessary to theoretically study the motion of particles in a sound field to develop new acoustic technology for precipitation enhancement. In this paper, the motion of cloud droplets due to a traveling sound wave field emitted from the ground to the air is simulated using the motion equation of point particles. The force condition of the particles in the oscillating flow field is analyzed. Meanwhile, the effects of droplet size, sound frequency, and sound pressure level (SPL) on the velocity and displacement of the droplets are also investigated. The results show that Stokes force and gravity play a dominant role in the falling process of cloud droplets, and the effect of the sound wave is mainly reflected in the fluctuation of velocity and displacement, which also promotes the displacement of cloud droplets to a certain extent. The maximum displacement increments of cloud droplets of 10 µm can reach 9200 µm due to the action of sound waves of 50 Hz and 143.4 dB. The SPL required for a noticeable velocity fluctuation for droplets of 10 µm with frequency of 50 Hz is 88.2 dB. When SPL < 100 dB and frequency > 500 Hz, the effect is negligible. The cloud droplet size plays a significant role in the motion, and the sound action is weaker for larger particles. For a smaller sound frequency and higher SPL, the effect of the sound wave is more prominent.

Author(s):  
Ying-Hui Jia ◽  
Fang-Fang Li ◽  
Kun Fang ◽  
Guang-Qian Wang ◽  
Jun Qiu

AbstractRecently strong sound wave was proposed to enhance precipitation. The theoretical basis of this proposal has not been effectively studied either experimentally or theoretically. Based on the microscopic parameters of atmospheric cloud physics, this paper solved the complex nonlinear differential equation to show the movement characteristics of cloud droplets under the action of sound waves. The motion process of individual cloud droplet in a cloud layer in the acoustic field is discussed as well as the relative motion between two cloud droplets. The effects of different particle sizes and sound field characteristics on particle motion and collision are studied to analyze the dynamic effects of thunder-level sound waves on cloud droplets. The amplitude of velocity variation has positive correlation with Sound Pressure Level (SPL) and negative correlation with the frequency of the surrounding sound field. Under the action of low-frequency sound waves with sufficient intensity, individual cloud droplets could be forced to oscillate significantly. The droplet smaller than 40μm can be easily driven by sound waves of 50 Hz and 123.4 dB. The calculation of the collision process of two droplets reveals that the disorder of motion for polydisperse droplets is intensified, resulting in the broadening of the collision time range and spatial range. When the acoustic frequency is less than 100Hz (@ 123.4dB) or the Sound Pressure Level (SPL) is greater than 117.4dB (@ 50Hz), the sound wave can affect the collision of cloud droplets significantly. This study provides theoretical perspective of acoustic effect to the microphysics of atmospheric clouds.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3674 ◽  
Author(s):  
Wei Lu ◽  
Yu Lan ◽  
Rongzhen Guo ◽  
Qicheng Zhang ◽  
Shichang Li ◽  
...  

A spiral sound wave transducer comprised of longitudinal vibrating elements has been proposed. This transducer was made from eight uniform radial distributed longitudinal vibrating elements, which could effectively generate low frequency underwater acoustic spiral waves. We discuss the production theory of spiral sound waves, which could be synthesized by two orthogonal acoustic dipoles with a phase difference of 90 degrees. The excitation voltage distribution of the transducer for emitting a spiral sound wave and the measurement method for the transducer is given. Three-dimensional finite element modeling (FEM)of the transducer was established for simulating the vibration modes and the acoustic characteristics of the transducers. Further, we fabricated a spiral sound wave transducer based on our design and simulations. It was found that the resonance frequency of the transducer was 10.8 kHz and that the transmitting voltage resonance was 140.5 dB. The underwater sound field measurements demonstrate that our designed transducer based on the longitudinal elements could successfully generate spiral sound waves.


2009 ◽  
Vol 23 (28n29) ◽  
pp. 5434-5443 ◽  
Author(s):  
ANTONIO CELANI ◽  
ANDREA MAZZINO ◽  
MARCO TIZZI

A new model to study the effect of turbulence on the cloud droplets in the condensation phase is proposed and its behavior investigated by direct numerical simulations. The model is a generalization of the one by Celani, Mazzino, Tizzi, New J. Phys.10, 075021 (2008), where the droplet feedback on vapor is now explicitly taken into account. Physically, it amounts to considering the fact that when a cloud droplet increases its size, vapor is subtracted from the ambient with the net result of a local reduction in the supersaturation field. It is shown how this effect plays to reduce the broadening of droplet size spectra in the condensation stage and thus to produce results in closer agreement with observations.


2017 ◽  
Author(s):  
Fan Yang ◽  
Pavlos Kollias ◽  
Raymond A. Shaw ◽  
Andrew M. Vogelmann

Abstract. Cloud droplet size distributions (CDSDs), which are related to cloud albedo and lifetime, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a Lagrangian bin-microphysics cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, sub-micrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with Korolev (1995). The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are: (1) droplets form on polydisperse aerosols of varying hygroscopicity and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in-situ measurements and 3-D dynamic models.


2021 ◽  
Vol 21 (16) ◽  
pp. 12317-12329
Author(s):  
Bipin Kumar ◽  
Rahul Ranjan ◽  
Man-Kong Yau ◽  
Sudarsan Bera ◽  
Suryachandra A. Rao

Abstract. Turbulent mixing of dry air affects the evolution of the cloud droplet size spectrum via various mechanisms. In a turbulent cloud, high- and low-vorticity regions coexist, and inertial clustering of cloud droplets can occur in low-vorticity regions. The nonuniformity in the spatial distribution of the size and in the number of droplets, variable vertical velocity in vortical turbulent structures, and dilution by entrainment/mixing may result in spatial supersaturation variability, which affects the evolution of the cloud droplet size spectrum via condensation and evaporation processes. To untangle the processes involved in mixing phenomena, a 3D direct numerical simulation of turbulent mixing followed by droplet evaporation/condensation in a submeter-sized cubed domain consisting of a large number of droplets was performed in this study. The analysis focused on the thermodynamic and microphysical characteristics of the droplets and the flow in high- and low-vorticity regions. The impact of vorticity generation in turbulent flows on mixing and cloud microphysics is illustrated.


2022 ◽  
Vol 8 (1) ◽  
pp. 177-182
Author(s):  
Aisha Azalia ◽  
Desi Ramadhanti ◽  
Hestiana Hestiana ◽  
Heru Kuswanto

In the process of learning physics, experiments are needed that can help someone in gaining a deeper understanding of learning physics concepts and using technology in the learning process, especially learning sound waves. In this study, the aim is to be able to analyze the sound frequency with the help of Audacity software. Subjects used are 5 different cat sounds. The implementation of this research uses several tools such as a microphone, Audacity software on a laptop, and 5 cat sounds. This experiment was carried out by bringing the micro hope closer to the cat with 5 cm so that the sound was captured by the microphone which would later be transferred to the laptop and read by the audacity software. Furthermore, the data recorded in audacity were analyzed. From the results of the study, it can be said that a tool that can be used in practicum and can read and capture sound waves is effectively used in analyzing sound frequency, spectrum in the application of sound learning so that it can be used as one of the learning media in practicum on sound wave material at Junior high school.


2021 ◽  
Author(s):  
Bipin Kumar ◽  
Rahul Ranjan ◽  
Man-Kong Yau ◽  
Sudarsan Bera ◽  
Suryachadra A. Rao

Abstract. Turbulent mixing of dry air affects evolution of cloud droplet size spectrum through various mechanisms. In a turbulent cloud, high and low vorticity regions coexist and inertial clustering of cloud droplets can occur in a low vorticity region. The non-uniformity in spatial distribution of size and number of droplets, variable vertical velocity in vortical turbulent structures, and dilution by entrainment/mixing may result in spatial supersaturation variability, which affects the evolution of the cloud droplet size spectrum by condensation and evaporation processes. To untangle the processes involved in mixing phenomena, a direct numerical simulation (DNS) of turbulent-mixing followed by droplet evaporation/condensation in a submeter-cubed-sized domain with a large number of droplets is performed in this study. Analysis focused on the thermodynamic and microphysical characteristics of the droplets and flow in high and low vorticity regions. The impact of vorticity production in turbulent flows on mixing and cloud microphysics is illustrated.


2010 ◽  
Vol 67 (9) ◽  
pp. 3006-3018 ◽  
Author(s):  
James G. Hudson ◽  
Stephen Noble ◽  
Vandana Jha

Abstract More than 140 supercooled clouds were compared with corresponding out-of-cloud cloud condensation nuclei (CCN) measurements. In spite of significant differences in altitude, temperature, distances from cloud base, updraft velocity (W), entrainment, and so on, the correlation coefficients (R) between droplet and CCN concentrations were substantial although not as high as those obtained in warm clouds with less variability of nonaerosol influences. CCN at slightly lower altitudes than the clouds had higher R values than CCN measured at the same altitude. Ice particle concentrations appeared to reduce droplet concentrations and reduce R between CCN and droplet concentrations, but only above 6-km altitude and for temperatures below −20°C. Although higher CCN concentrations generally resulted in higher droplet concentrations, increases in droplet concentrations were generally less than the increases in CCN concentrations. This was apparently due to the expected lower cloud supersaturations (S) when CCN concentrations are higher as was usually the case at lower altitudes. Cloud supersaturations showed more variability at higher altitudes and often very high values at higher altitudes. The use of liquid water content rather than droplet concentrations for cloud threshold resulted in higher R between CCN and droplet concentrations. The same R pattern for cumulative droplet–CCN concentrations as a function of threshold droplet sizes as that recently uncovered in warm clouds was found. This showed R changing rapidly from positive values when all cloud droplets were considered to negative values for slightly larger droplet size thresholds. After reaching a maximum negative value at intermediate droplet sizes, R then reversed direction to smaller negative or even positive values for larger cloud droplet size thresholds. This R pattern of CCN concentrations versus cumulative droplet concentrations for increasing size thresholds is consistent with adiabatic model predictions and thus suggests even greater CCN influence on cloud microphysics.


2015 ◽  
Vol 15 (11) ◽  
pp. 6147-6158 ◽  
Author(s):  
J. R. Pierce ◽  
B. Croft ◽  
J. K. Kodros ◽  
S. D. D'Andrea ◽  
R. V. Martin

Abstract. In this paper, we investigate the coagulation of interstitial aerosol particles (particles too small to activate to cloud droplets) with cloud drops, a process often ignored in aerosol-climate models. We use the GEOS-Chem-TOMAS (Goddard Earth Observing System-Chemistry TwO-Moment Aerosol Sectional) global chemical transport model with aerosol microphysics to calculate the changes in the aerosol size distribution, cloud-albedo aerosol indirect effect, and direct aerosol effect due to the interstitial coagulation process. We find that inclusion of interstitial coagulation in clouds lowers total particle number concentrations by 15–21% globally, where the range is due to varying assumptions regarding activation diameter, cloud droplet size, and ice cloud physics. The interstitial coagulation process lowers the concentration of particles with dry diameters larger than 80 nm (a proxy for larger CCN) by 10–12%. These 80 nm particles are not directly removed by the interstitial coagulation but are reduced in concentration because fewer smaller particles grow to diameters larger than 80 nm. The global aerosol indirect effect of adding interstitial coagulation varies from +0.4 to +1.3 W m−2 where again the range depends on our cloud assumptions. Thus, the aerosol indirect effect of this process is significant, but the magnitude depends greatly on assumptions regarding activation diameter, cloud droplet size, and ice cloud physics. The aerosol direct effect of the interstitial coagulation process is minor (< 0.01 W m−2) due to the shift in the aerosol size distribution at sizes where scattering is most effective being small. We recommend that this interstitial scavenging process be considered in aerosol models when the size distribution and aerosol indirect effects are important.


2018 ◽  
Vol 18 (10) ◽  
pp. 7313-7328 ◽  
Author(s):  
Fan Yang ◽  
Pavlos Kollias ◽  
Raymond A. Shaw ◽  
Andrew M. Vogelmann

Abstract. Cloud droplet size distributions (CDSDs), which are related to cloud albedo and rain formation, are usually broader in warm clouds than predicted from adiabatic parcel calculations. We investigate a mechanism for the CDSD broadening using a moving-size-grid cloud parcel model that considers the condensational growth of cloud droplets formed on polydisperse, submicrometer aerosols in an adiabatic cloud parcel that undergoes vertical oscillations, such as those due to cloud circulations or turbulence. Results show that the CDSD can be broadened during condensational growth as a result of Ostwald ripening amplified by droplet deactivation and reactivation, which is consistent with early work. The relative roles of the solute effect, curvature effect, deactivation and reactivation on CDSD broadening are investigated. Deactivation of smaller cloud droplets, which is due to the combination of curvature and solute effects in the downdraft region, enhances the growth of larger cloud droplets and thus contributes particles to the larger size end of the CDSD. Droplet reactivation, which occurs in the updraft region, contributes particles to the smaller size end of the CDSD. In addition, we find that growth of the largest cloud droplets strongly depends on the residence time of cloud droplet in the cloud rather than the magnitude of local variability in the supersaturation fluctuation. This is because the environmental saturation ratio is strongly buffered by numerous smaller cloud droplets. Two necessary conditions for this CDSD broadening, which generally occur in the atmosphere, are as follows: (1) droplets form on aerosols of different sizes, and (2) the cloud parcel experiences upwards and downwards motions. Therefore we expect that this mechanism for CDSD broadening is possible in real clouds. Our results also suggest it is important to consider both curvature and solute effects before and after cloud droplet activation in a cloud model. The importance of this mechanism compared with other mechanisms on cloud properties should be investigated through in situ measurements and 3-D dynamic models.


Sign in / Sign up

Export Citation Format

Share Document