A TYPE OF SINGLE SCROLL ATTRACTOR CHAOS SYNCHRONIZATION

2010 ◽  
Vol 24 (27) ◽  
pp. 5269-5283
Author(s):  
TIANSHU WANG ◽  
XINGYUAN WANG

This paper studies a type of single scroll attractor chaos system. Based on the research of Jiang et al. the global synchronization method is designed, and moreover, the author uses a combined synchronization of linear and nonlinear feedback, active control, single vector and unidirectional coupling synchronization three methods else, the problem of synchronization between same and different chaotic systems are realized by the four methods, respectively. The range of control function parameter is discussed according to the Routh–Hurwitz criterion and numerical simulations show the effectiveness of them.

2009 ◽  
Vol 70 (12) ◽  
pp. 4393-4401 ◽  
Author(s):  
Heng-Hui Chen ◽  
Geeng-Jen Sheu ◽  
Yung-Lung Lin ◽  
Chaio-Shiung Chen

2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Jianeng Tang

Chaos synchronization of different fractional order time-delay chaotic systems is considered. Based on the Laplace transform theory, the conditions for achieving synchronization of different fractional order time-delay chaotic systems are analyzed by use of active control technique. Then numerical simulations are provided to verify the effectiveness and feasibility of the developed method. At last, effects of the fraction order and the time delay on synchronization are further researched.


2014 ◽  
Vol 65 (2) ◽  
pp. 97-103 ◽  
Author(s):  
Rajagopal Karthikeyan ◽  
Vaidyanathan Sundarapandian

Abstract This paper investigates the hybrid chaos synchronization of identical Wang four-scroll systems (Wang, 2009), identical Liu-Chen four-scroll systems (Liu and Chen, 2004) and non-identical Wang and Liu-Chen four-scroll systems. Active control method is the method adopted to achieve the hybrid chaos synchronization of the four-scroll chaotic systems addressed in this paper and our synchronization results are established using Lyapunov stability theory. Since the Lyapunov exponents are not required for these calculations, the active control method is effective and convenient to hybrid synchronize identical and different Wang and Liu-Chen four-scroll chaotic systems. Numerical simulations are also shown to illustrate and validate the hybrid synchronization results derived in this paper.


2019 ◽  
Vol 16 (12) ◽  
pp. 4903-4907
Author(s):  
Regan Murugesan ◽  
Suresh Rasappan ◽  
Pugalarasu Rajan ◽  
Sathish Kumar Kumaravel

This paper investigates the global chaos synchronization of identical Liu-Su-Liu chaotic systems (2006) and non-identical Liu-Su-Liu chaotic system (2006) and Liu-Chen-Liu chaotic system (2007). In this paper, active nonlinear control method has been successfully applied to synchronize two identical Liu-Su-Liu chaotic systems and then to synchronize two different chaotic systems, viz. Liu-Su-Liu and Liu-Chen-Liu chaotic systems. Since the Lyapunov exponents are not required for these calculations, the active nonlinear control method is effective and convenient to synchronize Liu-Su-Liu and Liu-Chen-Liu chaotic systems. Numerical simulations are also given to illustrate the proposed synchronization approach.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650093 ◽  
Author(s):  
Michaux Kountchou ◽  
Patrick Louodop ◽  
Samuel Bowong ◽  
Hilaire Fotsin ◽  
Jurgen Kurths

This paper deals with the problem of optimal synchronization of two identical memristive chaotic systems. We first study some basic dynamical properties and behaviors of a memristor oscillator with a simple topology. An electronic circuit (analog simulator) is proposed to investigate the dynamical behavior of the system. An optimal synchronization strategy based on the controllability functions method with a mixed cost functional is investigated. A finite horizon is explicitly computed such that the chaos synchronization is achieved at an established time. Numerical simulations are presented to verify the effectiveness of the proposed synchronization strategy. Pspice analog circuit implementation of the complete master-slave-controller systems is also presented to show the feasibility of the proposed scheme.


2007 ◽  
Vol 18 (05) ◽  
pp. 795-804 ◽  
Author(s):  
AHMED A. M. FARGHALY

In a recent paper [Chaos, Solitons Fractals21, 915 (2004)], both real and complex Van der Pol oscillators were introduced and shown to exhibit chaotic limit cycles. In the present work these oscillators are synchronized by applying an active control technique. Based on Lyapunov function, the control input vectors are chosen and activated to achieve synchronization. The feasibility and effectiveness of the proposed technique are verified through numerical simulations.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Li-xin Yang ◽  
Wan-sheng He

This paper investigates the adaptive - synchronization of the fractional-order chaotic systems with nonidentical structures. Based on the stability of fractional-order systems and adaptive control technique, a general formula for designing the controller and parameters update law is proposed to achieve adaptive - synchronization between two different chaotic systems with different structures. The effective scheme parameters identification and - synchronization of chaotic systems can be realized simultaneously. Furthermore, two typical illustrative numerical simulations are given to demonstrate the effectiveness of the proposed scheme, for each case, we design the controller and parameter update laws in detail. The numerical simulations are performed to verify the effectiveness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document