EFFECT OF BORON ON CREEP DUCTILITY AND CREEP RUPTURE LIFE IN 9CR-1.5MO STEEL

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2490-2495 ◽  
Author(s):  
BUMJOON KIM ◽  
JIWOO IM ◽  
MOON K. KIM ◽  
JONGHOON LEE ◽  
BYEONGSOO LIM

In this study, the relationship between the creep ductility and rupture life of 9 Cr -1.5 Mo steel with boron addition at 600°C was investigated by small punch (SP) creep test from the viewpoint of the modified Monkman-Grant relation. The amount of boron addition ranged from 0.0076wt% to 0.0196 wt%. The general concept of Monkman-Grant ductility for uniaxial creep was introduced and then particularly modified for the SP creep. The microstructure of the steel was observed to analyze the effect of boron addition on the creep ductility and rupture life. Based on the modified Monkman-Grant ductility for SP creep, it was found that the boron addition improved the creep ductility and rupture life of the 9 Cr -1.5 Mo steel. Also, the relationship between the minimum creep displacement rate and the amount of boron addition was analyzed.

Author(s):  
Taichiro Kato ◽  
Shin-Ichi Komazaki ◽  
Yutaka Kohno ◽  
Hiroyasu Tanigawa

The small punch (SP) creep test was carried out at the temperatures of 823∼923 K by using a further miniaturized specimen, namely, TEM disk-type specimen (φ 3.0×t0.25 mm). The tests were applied to the fine grain heat affected zone (FGHAZ), tempered HAZ (THAZ) and base metal (BM), respectively, which were removed from the joint of the reduced activation ferritic steel welded by an electron beam welding, in order to investigate the creep properties of such local regimes. The results obtained from the SP creep test were correlated with those of uniaxial creep tests using the base metal (BM) and welded joint (WJ). Experimental results revealed that there were no large differences between the SP creep rupture strengths of the FGHAZ and THAZ and that of the BM at the relatively high load levels. This result was in good agreement with the fact that the uniaxial creep strength of the WJ was almost coincident with that of the BM at the relatively high stress levels. In addition, the ratio of load (P) to stress (σ), which gave same rupture time, was calculated by using the creep rupture data of the BMs. As a result, the ratio was determined to be 0.43, resulting in the following equation; P = 0.43 σ.


Author(s):  
Shin-ichi Komazaki ◽  
Keisuke Obata ◽  
Masato Tomobe ◽  
Masatsugu Yaguchi ◽  
Akihiro Kumada

The small punch (SP) testing technique was applied to five heats of Gr.91 steel, which had been actually used for boiler pipings in different ultra-super critical (USC) power plants for long periods of time, to investigate the applicability of this testing technique to the assessment of heat-to-heat variation of creep property. The SP creep test was carried out at the temperature of 650°C and under the loads of 190, 230, 300 N using a small disk-type specimen (ϕ 8 × 0.5 mm). The experimental results revealed that the SP creep rupture strength (rupture life) and the deformation rate were different depending on the heat. These differences were qualitatively in good agreement with those observed in the uniaxial creep test. The results obtained in this study indicated that the SP creep testing technique could be a strong tool for the assessment of heat-to-heat variation of in-service boiler pipings.


2002 ◽  
Vol 17 (8) ◽  
pp. 1945-1953 ◽  
Author(s):  
Maribel L. Saucedo-Muñoz ◽  
Shin-Ichi Komazaki ◽  
Toru Takahashi ◽  
Toshiyuki Hashida ◽  
Tetsuo Shoji

The creep properties for SUS 316 HTB austenitic stainless steel were evaluated by using the small-punch creep test at 650 °C for loads of 234, 286, 338, 408, and 478 N and at 700 °C for loads of 199 and 234 N. The creep curves, determined by means of the small-punch creep test, were similar to those obtained from a conventional uniaxial creep test. That is, they exhibited clearly the three creep stages. The width of secondary creep stage and rupture time tr decreased with the increase in testing load level. The creep rupture strength for the service-exposed material was lower than that of the as-received material at high testing loads. However, the creep resistance behavior was opposite at relatively low load levels. This difference in creep resistance was explained on the basis of the difference in the creep deformation and microstructural evolution during tests. It was also found that the ratio between the load of small-punch creep test and the stress of uniaxial creep test was about 1 for having the same value of creep rupture life.


Author(s):  
Toshimi Kobayashi ◽  
Toru Izaki ◽  
Junichi Kusumoto ◽  
Akihiro Kanaya

The small punch creep (SPC) test is possible to predict residual creep life at a high accuracy. But, the results of SPC tests cannot be compared with uniaxial creep or internal pressure creep results directly. In this report, the relationship between SPC test results and uniaxial creep test results in ASME A335 P11 (1.25Cr-0.5Mo Steel) was studied. The obtained relationship between SPC load and equivalent uniaxial creep stress formed a simple linear equation under the wide range of test temperature and test period. Then, the SPC results can be compared with uniaxial results by converting SPC loads to the equivalent uniaxial creep stresses. The relationship between SPC test results and internal pressure creep tests results was also studied. The internal creep life of as-received P11 pipe was almost same as SPC result when the hoop stress was converted to the SPC load. The creep lives of internal pressure creep influenced materials also showed good correspondence with SPC results. Therefore SPC can estimate the residual life of internal pressure creep influenced materials.


Author(s):  
Jongmin Kim ◽  
Woogon Kim ◽  
Minchul Kim

Abstract Thermally induced steam generator (SG) tube failures caused by hot gases from a damaged reactor core can result in a containment bypass event and may lead to release of fission products to the environment. A typical severe accident scenario is a station blackout (SBO) with loss of auxiliary feedwater. Alloy 690 which has increased the Cr content has been replaced for the SG tube due to its high corrosion resistance against stress corrosion cracking (SCC). However, there is lack of research on the high temperature creep rupture and life prediction model of Alloy 690. In this study, creep test was performed to estimate the high temperature creep rupture life of Alloy 690. Based on reported creep data and creep test results of Alloy 690 in this study, creep life extrapolation was carried out using Larson-Miller Parameter (LMP), Orr-Sherby-Dorn (OSD), Manson-Haferd Parameter (MHP), and Wilshire’s approach. And a hyperbolic sine (sinh) function to determine master curves in LMP, OSD and MHP methods was used for improving the creep life estimation of Alloy 690 material.


2010 ◽  
Vol 2010 (0) ◽  
pp. 143-145
Author(s):  
Masahiro KANEKO ◽  
Ken-ichi KOBAYASHI ◽  
Hideo KOYAMA

2014 ◽  
Vol 592-594 ◽  
pp. 739-743 ◽  
Author(s):  
J. Ganesh Kumar ◽  
K. Laha ◽  
M.D. Mathew

Small punch creep (SPC) testing technique is a material non-intensive testing technique for evaluating creep behavior of materials using miniature specimens. It can be used for remnant life assessment (RLA) studies on components in service, by scooping out limited material for testing without impairing the strength of component. In order to ensure the reliability of use of SPC technique for RLA, it is necessary to establish sound database on SPC properties of the material before putting into service. In this investigation, SPC technique was used to evaluate creep properties of 316LN stainless steel using specimens of size 10 x 10 x 0.5 mm. SPC tests were conducted in load controlled mode at 923 K and at various loads. SPC curves clearly exhibited primary, secondary and tertiary creep stages. The minimum deflection rate increased and rupture life decreased with an increase in applied load. Like in conventional creep test results, the minimum deflection rate obeyed Norton’s power law and Monkman-Grant relationship. SPC test was correlated with corresponding conventional creep test. Good correlation was established between creep rupture life values evaluated from SPC tests and conventional creep tests.


2007 ◽  
Vol 539-543 ◽  
pp. 4434-4439 ◽  
Author(s):  
Shinichi Komazaki ◽  
T. Nakata ◽  
Takayuki Sugimoto ◽  
Yutaka Kohno

The recently developed small punch (SP) creep test was applied to four different heatresistant ferritic steels, namely, two kinds of conventional ferritic steels which had been actually used in the high-temperature components for long periods and two advanced high chromium ferritic steels for fusion reactor materials to investigate the applicability of the SP creep test. The ratio of the load of SP creep test to the stress of standard uniaxial creep test was calculated so that both the creep rupture curves (load/stress versus Larson-Miller parameter curves) were overlapped to convert the results of SP creep test into those of standard test. As a result, the ratio was determined to be 2.4, irrespective of the kind of ferritic steel. This result indicates that the creep rupture strength of heat-resistance ferritic steels can be estimated using a miniaturized plate-type specimen and this conversion coefficient 2.4 independent of the kind of ferritic steel.


Sign in / Sign up

Export Citation Format

Share Document