2D quasi-planar or 3D structures? A comparison between CrBn(n = 2 − 10) wheel-like clusters and their corresponding 3D pyramidal clusters, and their hydrogen storage capability

2015 ◽  
Vol 29 (24) ◽  
pp. 1550172 ◽  
Author(s):  
E. K. Yildirim

In this study, we investigated stable structures for a transition metal atom–boron (CrB) wheel-like clusters and compared them with their corresponding 3D counterparts by means of density functional theory (DFT). In addition, hydrogen storage capability of the wheel-like system was investigated. All simulations were performed at the B3LYP/TZVP level of theory. We set out a complete route to the formation of CrB wheel-like clusters. Our results showed that, some of the clusters, investigated in this work (CrBn; n = 4, 6, 7, 8), either prefer to be in a 3D geometry rather than 2D quasi-planar or planar geometry. However, hydrogen doping has an interesting effect on both 2D quasi-planar and 3D geometries of this system. Simply it transforms the 3D structure, first, into a 2D quasi-planar, then a planar geometry. Furthermore, our results show that H–cluster interaction is too high for reversible hydrogen storage for these clusters.

2021 ◽  
Vol 197 ◽  
pp. 110613
Author(s):  
Ijeoma Cynthia Onyia ◽  
Stella Ogochukwu Ezeonu ◽  
Dmitri Bessarabov ◽  
Kingsley Onyebuchi Obodo

RSC Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 3174-3182
Author(s):  
Siwei Yang ◽  
Chaoyu Zhao ◽  
Ruxin Qu ◽  
Yaxuan Cheng ◽  
Huiling Liu ◽  
...  

In this study, a novel type oxygen reduction reaction (ORR) electrocatalyst is explored using density functional theory (DFT); the catalyst consists of transition metal M and heteroatom N4 co-doped in vacancy fullerene (M–N4–C64, M = Fe, Co, and Ni).


Nanoscale ◽  
2020 ◽  
Author(s):  
Shashikant Kumar ◽  
David Codony ◽  
Irene Arias ◽  
Phanish Suryanarayana

We study the flexoelectric effect in fifty-four select atomic monolayers using ab initio Density Functional Theory (DFT). Specifically, considering representative materials from each of Group III monochalcogenides, transition metal dichalcogenides...


Author(s):  
Yogeshwaran Krishnan ◽  
Sateesh Bandaru ◽  
Niall J. English

A series of transition-metal-doped Fe1−xMxCo(PO4)4(010) and Fe3Co1−xMx(PO4)4(010) electro-catalyst surfaces (with M = Mn, Os, Ru, Rh and Ir) have been modelled via density-functional theory (DFT) to gauge their oxygen-evolution reactions (OER).


Sign in / Sign up

Export Citation Format

Share Document