An application of high-temperature superconductors YBCO to magnetic separation

2017 ◽  
Vol 31 (25) ◽  
pp. 1745001 ◽  
Author(s):  
Qiudong Guo ◽  
Peng Zhang ◽  
Lin Bo ◽  
Guibin Zeng ◽  
Dengqian Li ◽  
...  

With the rapid development of manufacturing technology of high temperature superconductive YB[Formula: see text]Cu3O[Formula: see text] YBCO materials and decreasing in cost of production, YBCO is marching into industrial areas with its good performances as source of high-magnetic field and rather low cost in reaching superconductivity. Based on analysis of the performance of high temperature superconductors YBCO and development of technology in superconductive magnetic separation both home and abroad, we propose a new approach of taking YBCO tape to make a solenoid as the source of a high magnetic field of magnetic separatior of ores. The paper also looks into the future of the YBCO high temperature superconductive magnetic separation from the perspective of technology and cost, as well as its applications in other industries.

2017 ◽  
Vol 79 (3) ◽  
pp. 30601 ◽  
Author(s):  
Tara Benkel ◽  
Yasuyuki Miyoshi ◽  
Xavier Chaud ◽  
Arnaud Badel ◽  
Pascal Tixador

New improvements in high temperature superconductors (HTS) make them a promising candidate for building the next generation of high field magnets. As the conductors became recently available in long length, new projects such as NOUGAT (new magnet generation to generate Tesla at low cost) were started. This project aims at designing and building an HTS magnet prototype generating 10 T inside a 20 T resistive magnet. In this configuration, severe mechanical stress is applied on the insert and its extremities are subject to a high transverse component of the field. Because the conductor has anisotropic properties, it has to be studied carefully under similar conditions as the final prototype. First, this paper presents both the NOUGAT project and its context. Then, it shows the experimental results on short HTS tapes studied under high magnetic field up to 23 T with varying orientation. These results allow validating the current margin of the prototype. Finally, a first wound prototype is presented with experimental results up to 200 A under 16 T.


2021 ◽  
Vol 11 (6) ◽  
pp. 2741
Author(s):  
Sergey Zanegin ◽  
Nikolay Ivanov ◽  
Vasily Zubko ◽  
Konstantin Kovalev ◽  
Ivan Shishov ◽  
...  

The article is devoted to the study of losses in devices based on high-temperature superconductors of the 2nd generation. The complexity of the devices under study increases from a single rack coil to a winding assembled from several coils, and finally to an electric machine operating in generator mode. This is the way to experimentally study the behavior of 2nd generation high temperature superconductor (2G HTS) carrying a transport current in various conditions: self-field, external DC, and AC magnetic field. Attention is also paid to the losses in the winding during its operation from the inverter, which simulates the operating conditions in the motor mode of a propulsion system.


Author(s):  
Timur Sh. KOMBAEV ◽  
Mikhail K. ARTEMOV ◽  
Valentin K. SYSOEV ◽  
Dmitry S. DEZHIN

It is proposed to develop a small spacecraft for an experiment using high-temperature superconductors (HTS) and shape memory materials. The purpose of the experiment is to test a technological capability of creating a strong magnetic field on the small spacecraft using HTS and shape memory materials for deployed large-area structures, and study the magnetic field interaction with the solar wind plasma and the resulting force impact on the small spacecraft. This article is of a polemical character and makes it possible to take a fresh look at the applicability of new technologies in space-system engineering. Key words: high-temperature superconductors, shape memory materials, solar wind, spacecraft.


Author(s):  
Timur KOMBAEV ◽  
Mikhail ARTEMOV ◽  
Valentin SYSOEV ◽  
Dmitry DEZHIN ◽  

It is proposed to develop a small spacecraft for an experiment using high-temperature superconductors (HTS) and shape memory materials. The purpose of the experiment is to test a technological capability of creating a strong magnetic field on the small spacecraft using HTS and shape memory materials for deployed large-area structures, and study the magnetic field interaction with the solar wind plasma and the resulting force impact on the small spacecraft. This article is of a polemical character and makes it possible to take a fresh look at the applicability of new technologies in space-system engineering.


Author(s):  
Dennis Whyte

The advantages of high magnetic fields in tokamaks are reviewed, and why they are important in leading to more compact tokamaks. A brief explanation is given of what limits the magnetic field in a tokamak, and why high temperature superconductors (HTSs) are a game changer, not just because of their higher magnetic fields but also for reasons of higher current density and higher operating temperatures. An accelerated pathway to fusion energy is described, defined by the SPARC and ARC tokamak designs. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.


2004 ◽  
Vol 95 (11) ◽  
pp. 6693-6695 ◽  
Author(s):  
Vladimir Sokolovsky ◽  
Victor Meerovich ◽  
Valery Dikovsky ◽  
Eugene Paperno

2018 ◽  
Vol 32 (31) ◽  
pp. 1850346
Author(s):  
Kh. R. Rostami

An oscillatory differential method of local diagnostics of superconductors is applied to the analysis of the trapped magnetic flux and the effective demagnetization factor in YBCO samples. Regular steps over certain intervals of the external field are observed on the magnetic-field dependence of these parameters. It is demonstrated that, as the external field increases, crystallites in a sample are decomposed into sub- and nanocrystallites with a size much less than the penetration depth [Formula: see text] of the magnetic field. The first critical thermodynamic magnetic fields of sub- and nanocrystallites are determined. These results allow one to reveal the interaction mechanism between magnetic and crystalline microstructures of superconductors and provide a deeper insight into the physical processes that occur in high-temperature superconductors (HTSCs) in a magnetic field.


Sign in / Sign up

Export Citation Format

Share Document