Modal analysis of double-walled carbon nanocones using the finite element method

2017 ◽  
Vol 31 (32) ◽  
pp. 1750262 ◽  
Author(s):  
S. Rouhi ◽  
R. Ansari ◽  
S. Nickabadi

The vibrational properties of double-walled carbon nanocones are investigated herein. The double-walled carbon nanocones with different geometries including apex angles and lengths are considered. The simply supported–simply supported, clamped-free and clamped–clamped boundary conditions are applied on the nanocones. A linear elastic beam-based finite element method is employed to obtain the frequencies of the double-walled carbon nanocones. Elastic beam elements are used to model the carbon–carbon bond in the structure of the nanocones. Besides, the spring elements are employed to describe the nonbonding van der Waals interactions between different layers. Natural frequencies and mode shapes of the double-walled carbon nanocones are extracted by solving the eigenvalue problem. It is observed that increasing the disclination angle of nanocones increases their natural frequency. However, increasing the nanocone’s height leads to decreasing the frequency.

2010 ◽  
Vol 17 (6) ◽  
pp. 771-785
Author(s):  
Y.I. Özdemir ◽  
Y. Ayvaz

The purpose of this paper is to study parametric earthquake analysis of thick plates using Mindlin's theory, to determine the effects of the thickness/span ratio, the aspect ratio and the boundary conditions on the linear responses of thick plates subjected to earthquake excitations and to present the frequency parameters and the mode shapes of the same plates. In the analysis, finite element method is used for spatial integration and the Newmark-βmethod is used for time integration. A computer program using finite element method is coded in C++ to analyze the plates clamped or simply supported along all four edges. In the analysis, 8-noded finite element is used. Graphs and tables are presented that should help engineers in the design of thick plates subjected to earthquake excitations. It is concluded that, in general, the changes in the thickness/span ratio are more effective on the maximum responses considered in this study than the changes in the aspect ratio. It is also concluded that the effects of the change in the thickness/span ratio on the frequency parameter of the thick plates are always larger than those of the change in the aspect ratio.


2014 ◽  
Vol 4 (4) ◽  
pp. 26-33
Author(s):  
P.Deepak Kumar ◽  
◽  
Ishan Sharma ◽  
P.R. Maiti ◽  
◽  
...  

2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Zhao ◽  
Hong Bao ◽  
Xuechao Duan ◽  
Hongmei Fang

A frame deformation estimation algorithm is investigated for the purpose of real-time control and health monitoring of flexible lightweight aerospace structures. The inverse finite element method (iFEM) for beam deformation estimation was recently proposed by Gherlone and his collaborators. The methodology uses a least squares principle involving section strains of Timoshenko theory for stretching, torsion, bending, and transverse shearing. The proposed methodology is based on stain-displacement relations only, without invoking force equilibrium. Thus, the displacement fields can be reconstructed without the knowledge of structural mode shapes, material properties, and applied loading. In this paper, the number of the locations where the section strains are evaluated in the iFEM is discussed firstly, and the algorithm is subsequently investigated through a simple supplied beam and an experimental aluminum wing-like frame model in the loading case of end-node force. The estimation results from the iFEM are compared with reference displacements from optical measurement and computational analysis, and the accuracy of the algorithm estimation is quantified by the root-mean-square error and percentage difference error.


Author(s):  
Tripuresh Deb Singha ◽  
Apurba Das ◽  
Gopal Agarwal ◽  
Tanmoy Bandyopadhyay ◽  
Amit Karmakar

Abstract This paper presents an analytical investigation on the free vibration characteristics of symmetric sandwich conical shell with functionally graded material (FGM) face sheets using finite element method. Sandwich-type structures offer higher stiffness to weight ratio with excellent thermal barrier in high temperature application extending the operational life of the component. The sandwich-type conical structure used in the advanced supersonic and hypersonic space vehicles. The material properties of FGM face sheets are considered to be varied in thickness direction as per simple power law distribution in terms of the volume fractions of the FGM constituents. The core layer is considered as homogeneous and made of an isotropic material (Titanium alloy-Ti–6Al–4V). A finite element method is used to reduce the governing equations of vibration problem. The QR iteration algorithm used to solve the standard eigen value problem for determine the natural frequencies. Convergence studies are performed in respect of mesh sizes to substantiate the accuracy of the proposed method. Computer codes developed to obtain the numerical results for the combined effects of twist angle and rotational speed on the free vibration characteristics of symmetric sandwich conical shell with FGM face sheets. A detailed numerical study is carried out to examine the influence of the sandwich plate type, volume fraction index on the free vibration characteristics. The typical mode shapes are also illustrated for different cases.


Sign in / Sign up

Export Citation Format

Share Document