impurity potential
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 7)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 526
Author(s):  
Michał Inglot ◽  
Tomasz Szczepański

We present a model of impurity-induced magnetization of graphene assuming that the main source of graphene magnetization is related to impurity states with a localized spin. The analysis of solutions of the Schrödinger equation for electrons near the Dirac point has been performed using the model of massless fermions. For a single impurity, the solution of Schrödinger’s equation is a linear combination of Bessel functions. We found resonance energy levels of the non-magnetic impurity. The magnetic moment of impurity with a localized spin was accounted for the calculation of graphene magnetization using the Green’s function formalism. The spatial distribution of induced magnetization for a single impurity is obtained. The energy of resonance states was also calculated as a function of interaction. This energy is depending on the impurity potential and the coupling constant of interaction.


Atoms ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Georgios M. Koutentakis ◽  
Simeon I. Mistakidis ◽  
Peter Schmelcher

Recent studies have demonstrated that higher than two-body bath-impurity correlations are not important for quantitatively describing the ground state of the Bose polaron. Motivated by the above, we employ the so-called Gross Ansatz (GA) approach to unravel the stationary and dynamical properties of the homogeneous one-dimensional Bose-polaron for different impurity momenta and bath-impurity couplings. We explicate that the character of the equilibrium state crossovers from the quasi-particle Bose polaron regime to the collective-excitation stationary dark-bright soliton for varying impurity momentum and interactions. Following an interspecies interaction quench the temporal orthogonality catastrophe is identified, provided that bath-impurity interactions are sufficiently stronger than the intraspecies bath ones, thus generalizing the results of the confined case. This catastrophe originates from the formation of dispersive shock wave structures associated with the zero-range character of the bath-impurity potential. For initially moving impurities, a momentum transfer process from the impurity to the dispersive shock waves via the exerted drag force is demonstrated, resulting in a final polaronic state with reduced velocity. Our results clearly demonstrate the crucial role of non-linear excitations for determining the behavior of the one-dimensional Bose polaron.


2019 ◽  
Vol 45 (4) ◽  
pp. 412-418 ◽  
Author(s):  
S. V. Gudina ◽  
Yu. G. Arapov ◽  
V. N. Neverov ◽  
S. M. Podgornykh ◽  
M. R. Popov ◽  
...  

NANO ◽  
2016 ◽  
Vol 11 (03) ◽  
pp. 1650029 ◽  
Author(s):  
Wei Xiao ◽  
Jing-Lin Xiao

The properties of an electron strongly coupled to longitudinal optical (LO) phonon in RbCl parabolic quantum dot (PQD) with a hydrogen-like impurity at the center were investigated at a finite temperature. We have obtained the vibrational frequency of a strong-coupling polaron in RbCl PQD by using linear combination operator method. We then calculate the effects of temperature, the Coulombic impurity potential and the effective confinement strength on the vibrational frequency by using unitary transformation and the quantum statistics theory methods. The influences of the temperature, the Coulombic impurity potential and the effective confinement strength on the ground state energy and the ground state binding energy are also analyzed. The strengths of these quantities increase with raising temperature. The vibrational frequency is an increasing function of the Coulombic impurity potential and the effective confinement strength. The ground state energy is an increasing function of the effective confinement strength, whereas it is a decreasing one of the Coulombic impurity potential. The ground state binding energy is an increasing function of the Coulombic impurity potential, whereas it is a decayed one of the effective confinement strength.


2016 ◽  
Vol 93 (1) ◽  
Author(s):  
Pei-Lin Yin ◽  
Wei Wei ◽  
Hai-Xiao Xiao ◽  
Hong-Tao Feng ◽  
Xiao-Jun Liu ◽  
...  

2015 ◽  
Vol 15 (10) ◽  
pp. 8238-8242
Author(s):  
S. C. Kim ◽  
S.-R. Eric Yang

We investigate the Coulomb impurity problem of graphene in strong coupling limit in the presence of magnetic fields. When the strength of the Coulomb potential is sufficiently strong the electron of the lowest energy boundstate of the n = 0 Landau level may fall to the center of the potential. To prevent this spurious effect the Coulomb potential must be regularized. The scaling function for the inverse probability density of this state at the center of the impurity potential is computed in the strong coupling regime. The dependence of the computed scaling function on the regularization parameter changes significantly as the strong coupling regime is approached.


Sign in / Sign up

Export Citation Format

Share Document