Energy-carrying wave simulation of the Lonngren-wave equation in semiconductor materials

Author(s):  
Hülya Durur

In this study, the Lonngren-wave equation, which is physically semiconductor, is taken into consideration. Traveling wave solutions of this equation are presented with generalized exponential rational function method, which is one of the mathematically powerful analytical methods. These solutions are produced in bright (non-topological) soliton and complex trigonometric-type traveling wave solutions. Three-dimensional (3D), 2D and contour graphics are presented with the help of a ready-made package program with special values given to constants in these solutions. The effect of the change in wave velocity on the traveling wave solution showing energy transport is presented with the help of simulation. It is argued that velocity is one of the important factors in wave diffraction. In the results and discussion section, the advantages and disadvantages of the method are discussed.

2021 ◽  
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Serbay Duran

Abstract In this presented article, modified 1/G'-expansion and modified Kudryashov methods are applied to generate traveling wave solutions of perturbed Chen-Lee-Liu (CLL) equation. The similar and different aspects of the solutions produced by both analytic methods are discussed in the results and discussion section. By giving special values to the constants in the solutions obtained by analytical methods, 2D, 3D and contour graphics representing the shape of the standing wave at any time are presented. Additionally, the advantages and disadvantages of the two analytic methods are discussed and presented in the results and discussion section. Also, a solitary wave is produced by giving special values ​​to the parameters in the hyperbolic type complex traveling wave solution. Simulations are created for different values ​​of the frequency and velocity propagation parameters of the solitary wave. The values ​​of these parameters are calculated for the breakage event physically. A computer package program is used for operations such as solving complex operations, drawing graphics and systems of algebraic equations.


2020 ◽  
Vol 10 (1) ◽  
pp. 66-75
Author(s):  
Byungsoo Moon

Abstract In this paper, we study the existence of peaked traveling wave solution of the generalized μ-Novikov equation with nonlocal cubic and quadratic nonlinearities. The equation is a μ-version of a linear combination of the Novikov equation and Camassa-Hom equation. It is found that the equation admits single peaked traveling wave solutions.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 1003-1010
Author(s):  
Asıf Yokuş ◽  
Hülya Durur ◽  
Taher A. Nofal ◽  
Hanaa Abu-Zinadah ◽  
Münevver Tuz ◽  
...  

Abstract In this article, the Sinh–Gordon function method and sub-equation method are used to construct traveling wave solutions of modified equal width equation. Thanks to the proposed methods, trigonometric soliton, dark soliton, and complex hyperbolic solutions of the considered equation are obtained. Common aspects, differences, advantages, and disadvantages of both analytical methods are discussed. It has been shown that the traveling wave solutions produced by both analytical methods with different base equations have different properties. 2D, 3D, and contour graphics are offered for solutions obtained by choosing appropriate values of the parameters. To evaluate the feasibility and efficacy of these techniques, a nonlinear evolution equation was investigated, and with the help of symbolic calculation, these methods have been shown to be a powerful, reliable, and effective mathematical tool for the solution of nonlinear partial differential equations.


2021 ◽  
pp. 2150484
Author(s):  
Asif Yokuş

In this study, the auxiliary equation method is applied successfully to the Lonngren wave equation. Bright soliton, bright–dark soliton solutions are produced, which play an important role in the distribution and distribution of electric charge. In the conclusion and discussion section, the effect of nonlinearity term on wave behavior in bright soliton traveling wave solution is examined. The advantages and disadvantages of the method are discussed. While graphs representing the stationary wave are obtained, special values are given to the constants in the solutions. These graphs are presented as 3D, 2D and contour.


2020 ◽  
Vol 34 (29) ◽  
pp. 2050282
Author(s):  
Asıf Yokuş ◽  
Doğan Kaya

The traveling wave solutions of the combined Korteweg de Vries-modified Korteweg de Vries (cKdV-mKdV) equation and a complexly coupled KdV (CcKdV) equation are obtained by using the auto-Bäcklund Transformation Method (aBTM). To numerically approximate the exact solutions, the Finite Difference Method (FDM) is used. In addition, these exact traveling wave solutions and numerical solutions are compared by illustrating the tables and figures. Via the Fourier–von Neumann stability analysis, the stability of the FDM with the cKdV–mKdV equation is analyzed. The [Formula: see text] and [Formula: see text] norm errors are given for the numerical solutions. The 2D and 3D figures of the obtained solutions to these equations are plotted.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850017 ◽  
Author(s):  
Aly R. Seadawy

The problem formulations of models for three-dimensional weakly nonlinear shallow water waves regime in a stratified shear flow with a free surface are studied. Traveling wave solutions are generated by deriving the nonlinear higher order of nonlinear evaluation equations for the free surface displacement. We obtain the velocity potential and pressure fluid in the form of traveling wave solutions of the obtained nonlinear evaluation equation. The obtained solutions and the movement role of the waves of the exact solutions are new travelling wave solutions in different and explicit form such as solutions (bright and dark), solitary wave, periodic solitary wave elliptic function solutions of higher-order nonlinear evaluation equation.


2011 ◽  
Vol 2011 ◽  
pp. 1-26 ◽  
Author(s):  
Weiguo Zhang ◽  
Xiang Li

We focus on studying approximate solutions of damped oscillatory solutions of generalized KdV-Burgers equation and their error estimates. The theory of planar dynamical systems is employed to make qualitative analysis to the dynamical systems which traveling wave solutions of this equation correspond to. We investigate the relations between the behaviors of bounded traveling wave solutions and dissipation coefficient, and give two critical valuesλ1andλ2which can characterize the scale of dissipation effect, for right and left-traveling wave solution, respectively. We obtain that for the right-traveling wave solution if dissipation coefficientα≥λ1, it appears as a monotone kink profile solitary wave solution; that if0<α<λ1, it appears as a damped oscillatory solution. This is similar for the left-traveling wave solution. According to the evolution relations of orbits in the global phase portraits which the damped oscillatory solutions correspond to, we obtain their approximate damped oscillatory solutions by undetermined coefficients method. By the idea of homogenization principle, we give the error estimates for these approximate solutions by establishing the integral equations reflecting the relations between exact and approximate solutions. The errors are infinitesimal decreasing in the exponential form.


Sign in / Sign up

Export Citation Format

Share Document