POST-ANNEALING EFFECTS ON THE STRUCTURAL, OPTICAL AND ELECTRICAL PROPERTIES OF ITO FILMS STUDIED BY SPECTROSCOPIC ELLIPSOMETRY

2010 ◽  
Vol 24 (06) ◽  
pp. 595-605 ◽  
Author(s):  
Y. INRITSAPONG ◽  
P. CHINDAUDOM ◽  
N. NUNTAWONG ◽  
V. PATTHANASETTHAKUL ◽  
M. HORPHATHUM ◽  
...  

ITO thin films were coated on unheated glass and Si -wafer (100) substrates by ion-assisted evaporation. The effects of post annealing, in vacuum at 250°C and 350°C for 1 h, on the structural, optical and electrical properties were studied. The structure was characterized by X-ray diffraction (XRD). The surface morphology of the films was investigated by atomic force microscopy (AFM). The optical properties were evaluated by spectrophotometer and spectroscopic ellipsometry (SE). The resistivity was measured by the four-point probes method. It was found that the increase of post-annealing temperature would improve the film crystallinity and electrical properties. The preferred orientation of ITO thin film after annealing is (222). The resistivity of the as-deposited film is found to be 5.52 × 10-4 Ωcm and decreases to 2.11 × 10-4 Ωcm after annealing at 350°C. The AFM image reveals that the surface roughness decreases with increasing annealing temperature. The uniqueness test based on SE analysis data has been applied for ITO modeling. This modeling indicates that the film microstructure consists of three layers including the higher-index ITO layer, the effective medium approximation (EMA) layer to represent a slightly lower optical index, and the surface roughness layer on top. The EMA thickness and its relative composition decrease with increasing annealing temperature. The extinction coefficient in the IR region increases whereas the refractive index decreases with increasing annealing temperature.

2018 ◽  
Vol 31 (1) ◽  
pp. 37 ◽  
Author(s):  
Iman Hameed Khudayer ◽  
Bushra Hashem Hussein Ali ◽  
Mohammed Hamid Mustafa ◽  
Ayser Jumah Ibrahim

  The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness  have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1. The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K. The amount3or (concentration) of the elements3(Ag, In, Se) in the  prepared alloy3was verified using  an energy dispersive3x-ray spectrometer (EDS)3technology. X-ray diffraction3analysis shows that AIS alloy  prepared as (powder) and the thin films3are polycrystalline  of tetragonal3structure with preferential orientation3(112). The crystalline3size increases  as a function3of annealing temperature. The atomic force3microscope (AFM) technique  was used to examine3the  topography  and  estimate3the surface roughness, also the  average grain3size of the films. The results show3that the grain size increases3with annealing3temperature.   The optical4band gap of the films lies4in the range 1.6-1.9 eV. The films4appear to be4n-type indicating that the electrons4as a dominant charge4carrier. The electrical conductivity4increases  with a corresponding4increase in annealing4temperature.  


2011 ◽  
Vol 343-344 ◽  
pp. 116-123
Author(s):  
Yu Ming Peng ◽  
Yan Kuin Su ◽  
Cheng Jye Chu ◽  
Ru Yuan Yang ◽  
Ruei Ming Huang

In this paper, the indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method and then annealed under different temperatures (400, 500 and 550°C) in a mixture atmosphere of 3.75% H2 with 96.25% N2 gases. The microstructure, optical and electrical properties of the prepared films were investigated and discussed. The XRD patterns of the ITO thin films indicated the main peak of the (222) plane and showed a high degree of crystallinity with an increase of the annealing temperature. In addition, due to the pores existing in the prepared films, the optical and electrical properties of the prepared films are degraded through the sol-gel process. Thus, the best transmittance of 70.0 %in the visible wavelength region and the lowest resistivity of about 1.1×10-2 Ω-cm were obtained when the prepared film was annealed at 550°C.


Sign in / Sign up

Export Citation Format

Share Document