Theoretical design of a metal fan-rod nanoantenna for single photon source applications

2014 ◽  
Vol 28 (08) ◽  
pp. 1450061
Author(s):  
Tian Ding ◽  
Yu-Jue Wang ◽  
Rong-Zhen Jiao

In this paper, the characteristic and Purcell factor of a metal fan-rod antenna are analyzed theoretically. The antenna consists of a pair of fan-rod structures. The characteristic is obtained by the simulation method. The results show that the coupling areas and the geometries of the fan-rod antenna have great influence on the resonance wavelength. The Purcell factor is also analyzed with the change of optical wavelength which can enhance the collection efficiency of single photon source. The theories, simulations and calculations in this paper are important for the experimental operation of single photon source with nanoantenna.

2021 ◽  
Author(s):  
shahramm mohammad nejad ◽  
Amine Mahmoudi ◽  
Hossein Arab

Abstract In this work, the finite difference time domain (FDTD) method has been utilized to simulate the propagation emission from PbS quantum dots in a hexagonal InP nanowire as a single photon source. The effect of height and radius of the nanowire as well as the location and orientation of the dipole source in the Purcell factor and Quality factor of the nanowire have been investigated. A broadband electric dipole source has been used to model the quantum dot and the effect of shape and radius of PbS quantum dot have been investigated in the final results. The conclusive structure has been optimized to a nanowire with hexagonal cross section with radius of 220nm and height of 10um. The emission peak obtained above 1um with Purcell factor of 4.72 which is in good agreement with cases have been used as single photon source in quantum communication.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012181
Author(s):  
S A Blokhin ◽  
M A Bobrov ◽  
N A Maleev ◽  
A A Blokhin ◽  
A P Vasyl’ev ◽  
...  

Abstract We propose a hybrid microcavity design of a 1.3 μm range electrically driven single-photon source (SPS) consisting of two high-contrast dielectric distributed Bragg reflectors which surround a 3λ-thick semiconductor cavity with two intra-cavity contact layers and four 40-nm-thick oxide-confined apertures. According to 3D finite-difference time-domain modelling, the overall photon-extraction efficiency of ~74% and the Purcell factor of ~13 can be obtained by properly adjusting the position of oxide-confined apertures relative to the electric field of the fundamental optical mode. The studied SPS design also demonstrates a coupling efficiency of up to 13% within numerical aperture 0.12 in contrast to ~5% reached for a conventional semiconductor micropillar.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David B. Northeast ◽  
Dan Dalacu ◽  
John F. Weber ◽  
Jason Phoenix ◽  
Jean Lapointe ◽  
...  

AbstractWe present a compact, fibre-coupled single photon source using gradient-index (GRIN) lenses and an InAsP semiconductor quantum dot embedded within an InP photonic nanowire waveguide. A GRIN lens assembly is used to collect photons close to the tip of the nanowire, coupling the light immediately into a single mode optical fibre. The system provides a stable, high brightness source of fibre-coupled single photons. Using pulsed excitation, we demonstrate on-demand operation with a single photon purity of 98.5% when exciting at saturation in a device with a source-fibre collection efficiency of 35% and an overall single photon collection efficiency of 10%. We also demonstrate “plug and play” operation using room temperature photoluminescence from the InP nanowire for room temperature alignment.


PhotoniX ◽  
2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Zhiyuan Qian ◽  
Lingxiao Shan ◽  
Xinchen Zhang ◽  
Qi Liu ◽  
Yun Ma ◽  
...  

AbstractSingle-photon source in micro- or nanoscale is the basic building block of on-chip quantum information and scalable quantum network. Enhanced spontaneous emission based on cavity quantum electrodynamics (CQED) is one of the key principles of realizing single-photon sources fabricated by micro- or nanophotonic cavities. Here we mainly review the spontaneous emission of single emitters in micro- or nanostructures, such as whispering gallery microcavities, photonic crystals, plasmon nanostructures, metamaterials, and their hybrids. The researches have enriched light-matter interaction as well as made great influence in single-photon source, photonic circuit, and on-chip quantum information.


2005 ◽  
Vol 86 (20) ◽  
pp. 201111 ◽  
Author(s):  
M. B. Ward ◽  
O. Z. Karimov ◽  
D. C. Unitt ◽  
Z. L. Yuan ◽  
P. See ◽  
...  

2010 ◽  
Vol 96 (10) ◽  
pp. 101105 ◽  
Author(s):  
Pallab Bhattacharya ◽  
Ayan Das ◽  
Debashish Basu ◽  
Wei Guo ◽  
Junseok Heo

2013 ◽  
Vol 38 (5) ◽  
pp. 649 ◽  
Author(s):  
Alex S. Clark ◽  
Chad Husko ◽  
Matthew J. Collins ◽  
Gaelle Lehoucq ◽  
Stéphane Xavier ◽  
...  

2009 ◽  
Vol 3 (11) ◽  
pp. 611-612 ◽  
Author(s):  
John Cunningham

2014 ◽  
Vol 22 (3) ◽  
pp. 3244 ◽  
Author(s):  
Martin J. Stevens ◽  
Scott Glancy ◽  
Sae Woo Nam ◽  
Richard P. Mirin

Sign in / Sign up

Export Citation Format

Share Document