bragg reflectors
Recently Published Documents


TOTAL DOCUMENTS

1027
(FIVE YEARS 98)

H-INDEX

48
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Pedro Campos Resendre ◽  
Marisol S. Martín-González

Natural systems found ways to exploit light at the nanoscale, devising complex 3D structures that behave as photonic crystals, able to produce structural coloration. Distributed Bragg reflectors are a particular...


2021 ◽  
pp. 131621
Author(s):  
Jie Liu ◽  
Yuan Yu ◽  
Xiaokun Yang ◽  
Rongrong Chen ◽  
Caina Luan ◽  
...  

Author(s):  
Cleophace Seneza ◽  
Christoph Berger ◽  
Prabha Sana ◽  
Hartmut Witte ◽  
Jürgen Bläsing ◽  
...  

Abstract We report on the realization of highly conductive and highly reflective n-type AlInN/GaN distributed Bragg reflectors (DBR) for use in vertical cavity surface emitters in a metalorganic vapor phase epitaxy process. While Ge-doping enables low-resistive n-type GaN/AlInN/GaN heterostructures, very high Ge doping levels compromise maximum optical reflectivities of DBRs. Simulations of the Bragg mirror's reflectivities together with structural analysis by X-ray diffraction reveal an increased absorption within the doped AlInN layers and interface roughening as major causes for the observed reduction of the optical reflectivity. By adjusting the Ge doping level in the AlInN layers, this structural degradation was minimized and highly conductive, 45-fold AlInN/GaN DBR structures with a maximum reflectivity of 99 % and vertical specific resistance of 5x10-4 Ωcm2 were realized.


Nano Express ◽  
2021 ◽  
Author(s):  
Weijia Shao ◽  
Tingting Liu

Abstract Hot-electron photodetectors (HE PDs) are attracting a great deal of attention from plasmonic community. Many efficient HE PDs with various plasmonic nanostructures have been demonstrated, but their preparations usually rely on complicated and costly fabrication techniques. Planar HE PDs are viewed as potential candidates of cost-effective and large-area applications, but they likely fail in the simultaneous achievement of outstanding optical absorption and hot-electron collection. To reconcile the contradiction between optical and electrical requirements, herein, we propose a planar HE PD based on optical Tamm plasmons (TPs) consisted of an ultrathin gold film (10 nm) sandwiched between two distributed Bragg reflectors (DBRs). Simulated results show that strong optical absorption (>0.95) in the ultrathin Au film is realized. Electrical calculations show that the predicted peak photo-responsivity of proposed HE PD with double DBRs is over two times larger than that of conventional single-DBR HE PD. Moreover, the planar dual-DBR HE PDs exhibit a narrowband photodetection functionality and sustained performance under oblique incidences. The optical nature associated with TP resonance is elaborated.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012181
Author(s):  
S A Blokhin ◽  
M A Bobrov ◽  
N A Maleev ◽  
A A Blokhin ◽  
A P Vasyl’ev ◽  
...  

Abstract We propose a hybrid microcavity design of a 1.3 μm range electrically driven single-photon source (SPS) consisting of two high-contrast dielectric distributed Bragg reflectors which surround a 3λ-thick semiconductor cavity with two intra-cavity contact layers and four 40-nm-thick oxide-confined apertures. According to 3D finite-difference time-domain modelling, the overall photon-extraction efficiency of ~74% and the Purcell factor of ~13 can be obtained by properly adjusting the position of oxide-confined apertures relative to the electric field of the fundamental optical mode. The studied SPS design also demonstrates a coupling efficiency of up to 13% within numerical aperture 0.12 in contrast to ~5% reached for a conventional semiconductor micropillar.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5149
Author(s):  
Ewelina Białek ◽  
Grzegorz Szwachta ◽  
Miron Kaliszewski ◽  
Małgorzata Norek

A robust and reliable method for fabricating porous anodic alumina (PAA)-based distributed Bragg reflectors (DBRs), operating in mid-infrared (MIR) spectral region, is presented. The method relies on application of high (UH) and low (UL) voltage pulse sequence repeated in cycles. PAA-based DBR consists of alternating high-(dH) and low-porosity (dL) layers translated directly into periodically varied refractive index. Two anodization modes were used: time- and charge density-controlled mode. The former generated dH + dL pairs with non-uniform thickness (∆d) and effective refractive index (∆neff). It is supposed, that owing to a compensation effect between the ∆d and ∆neff, the photonic stopbands (PSBs) were symmetrical and intensive (transmittance close to zero). Under the charge density-controlled mode dH + dL pairs of uniform thickness were formed. However, the remaining ∆neff provided an asymmetrical broadening of PSBs. Furthermore, it is demonstrated that the spectral position of the PSBs can be precisely tuned in the 3500–5500 nm range by changing duration of voltage pulses, the amount of charge passing under subsequent UH and UL pulses, and by pore broadening after the electrochemical synthesis. The material can be considered to be used as one-dimensional transparent photonic crystal heat mirrors for solar thermal applications.


Sign in / Sign up

Export Citation Format

Share Document