The synthesis of Ba2+-doped multiferroic BiFeO3 nanoparticles using co-precipitation method in the presence of various surfactants and the investigation of structural and magnetic features

2017 ◽  
Vol 31 (15) ◽  
pp. 1750169 ◽  
Author(s):  
Reza Mardani

In this paper, doped bismuth ferrite nanoparticles with barium (Bi[Formula: see text]Ba[Formula: see text]FeO[Formula: see text], [Formula: see text] = 0.1, 0.15, 0.2) were synthesized by co-precipitation method in the presence of various surface activators. Structural properties, magnetic properties and the size of synthesized nanoparticles were investigated by different techniques such as Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscope (SEM), dynamic light scattering (DLS) and vibration sample magnetometry (VSM). The data obtained from XRD analysis showed a phase shift from rhombohedral to tetragonal structure by the enhancement of Barium amount in Bismuth ferrite structure. The results of TEM exhibit that the size of particles are 10 nm in average for the synthesized Bi[Formula: see text]Ba[Formula: see text]FeO[Formula: see text] and SEM analysis clarifies the uniform shape of particles which confirms the benign purity of the obtained material. VSM analysis shows that the best magnetic function will be observed when stoichiometric amount of Barium (Bi[Formula: see text]Ba[Formula: see text]FeO[Formula: see text] is [Formula: see text] = 0.15. The effect of diverse surface activators including Triton X-100, polyvinyl alcohol (PVA), sodium dodecyl sulfate (SDS), and cetyl trimethylammonium bromide (CTAB) was studied in the synthesis of Bi[Formula: see text]Ba[Formula: see text]FeO[Formula: see text] nanoparticles and CTAB presented the best effect on the magnetic properties of these nanoparticles.

2019 ◽  
Vol 9 (3) ◽  
pp. 598
Author(s):  
Danna Trejo-Arroyo ◽  
Karen Acosta ◽  
Julio Cruz ◽  
Ana Valenzuela-Muñiz ◽  
Ricardo Vega-Azamar ◽  
...  

In this research, the effect of the addition of zirconium oxide-synthesized nanoparticles on the microstructural development and the physical–mechanical properties of cement mortars with limestone aggregates was studied. Zirconia nanoparticles were synthesized using the co-precipitation method. According to XRD analysis, a mixture of tetragonal (t) and monoclinic (m) zirconia phases was obtained, with average crystallite sizes around 15.18 and 17.79 nm, respectively. Based on the ASTM standards, a mixture design was obtained for a coating mortar with a final sand/cement ratio of 1:2.78 and a water/cement ratio of 0.58. Control mortars and mortars with ZrO2 additions were analyzed for two stages of curing of the mortar—7 and 28 days. According to SEM analysis, mortars with ZrO2 revealed a microstructure with a high compaction degree and an increase in compressive strength of 9% on the control mortars. Due to the aggregates’ characteristics, adherence with the cement paste in the interface zone was increased. It is suggested that the reinforcing effect of ZrO2 on the mortars was caused by the effect of nucleation sites in the main phase C–S–H and the inhibition of the growth of large CH crystals, and the filler effect generated by the nanometric size of the particles. This produced a greater compaction volume, suggesting that faults are probably originated in the aggregates.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 341
Author(s):  
Tien Hiep Nguyen ◽  
Gopalu Karunakaran ◽  
Yu.V. Konyukhov ◽  
Nguyen Van Minh ◽  
D.Yu. Karpenkov ◽  
...  

This paper presents the synthesis of Fe–Co–Ni nanocomposites by chemical precipitation, followed by a reduction process. It was found that the influence of the chemical composition and reduction temperature greatly alters the phase formation, its structures, particle size distribution, and magnetic properties of Fe–Co–Ni nanocomposites. The initial hydroxides of Fe–Co–Ni combinations were prepared by the co-precipitation method from nitrate precursors and precipitated using alkali. The reduction process was carried out by hydrogen in the temperature range of 300–500 °C under isothermal conditions. The nanocomposites had metallic and intermetallic phases with different lattice parameter values due to the increase in Fe content. In this paper, we showed that the values of the magnetic parameters of nanocomposites can be controlled in the ranges of MS = 7.6–192.5 Am2/kg, Mr = 0.4–39.7 Am2/kg, Mr/Ms = 0.02–0.32, and HcM = 4.72–60.68 kA/m by regulating the composition and reduction temperature of the Fe–Co–Ni composites. Due to the reduction process, drastic variations in the magnetic features result from the intermetallic and metallic face formation. The variation in magnetic characteristics is guided by the reduction degree, particle size growth, and crystallinity enhancement. Moreover, the reduction of the surface spins fraction of the nanocomposites under their growth induced an increase in the saturation magnetization. This is the first report where the influence of Fe content on the Fe–Co–Ni ternary system phase content and magnetic properties was evaluated. The Fe–Co–Ni ternary nanocomposites obtained by co-precipitation, followed by the hydrogen reduction led to the formation of better magnetic materials for various magnetically coupled device applications.


2018 ◽  
Vol 44 (17) ◽  
pp. 20782-20789 ◽  
Author(s):  
Rohit R. Powar ◽  
Varsha D. Phadtare ◽  
Vinayak G. Parale ◽  
Hyung-Ho Park ◽  
Sachin Pathak ◽  
...  

2015 ◽  
Vol 1112 ◽  
pp. 550-554
Author(s):  
M. Zaki Mubarok ◽  
Christian Adi Kurniawan

At the present paper, a process of magnesia (MgO) synthesis from East Java dolomite through hydrochloride acid leaching, precipitation and calcination as well as characteristic of the product is discussed. Results of the experimental works show that the dissolution rate of magnesium and calcium from dolomite in hydrochloride acid solution was very rapid. Complete magnesium extraction was obtained by the leaching test with acid concentration of 1.5 molar, particle size distribution of -325#, solid-liquid ratio 1:20 (g/mL), stirring speed 200 rpm at room temperature after only 10 seconds. Precipitation of Mg(OH)2 by the addition of 20% (v/v) CaO slurry into pregnant leach solution resulted in 97.5% Mg precipitation after 1 minute. Solution pH must be maintained at a level of 10-10.5 by adjusting CaO addition in order to minimize calcium co-precipitation and to obtain high purity of Mg(OH)2 precipitate. Calcinations of Mg(OH)2 were performed at temperature range of 550-800°C in which 99% of crystal water removal took place after 5 minute at temperature of 800°C. Lower temperature requires longer time of crystalline water removal from Mg(OH)2. XRF analysis showed MgO purity of 88% with the main impurities of calcium and chloride. XRD analysis detected the presences of calcium as calcite (CaCO3) and portlandite (Ca(OH)2) as impurities in the MgO product. SEM analysis of the MgO powder revealed a nano size of MgO with particle diameter of about 50 nm.


2010 ◽  
Vol 322 (21) ◽  
pp. 3470-3475 ◽  
Author(s):  
Yue Zhang ◽  
Zhi Yang ◽  
Di Yin ◽  
Yong Liu ◽  
ChunLong Fei ◽  
...  

2019 ◽  
Vol 546 (1) ◽  
pp. 48-56
Author(s):  
Ze Wu ◽  
Yang Song ◽  
Ruonan Zhang ◽  
Lianwei Shan ◽  
Limin Dong ◽  
...  

2015 ◽  
Vol 1101 ◽  
pp. 286-289 ◽  
Author(s):  
Maya Rahmayanti ◽  
Sri Juari Santosa ◽  
Sutarno

Gallic acid-modified magnetites were synthesized by one and two-step reactions via the newly developed sonochemical co-precipitation method. The two-step reaction included the formation of magnetite powder and mixing the magnetite powder with gallic acid solution, while the one-step reaction did not go through the formation magnetite powder. The obtained gallic acid-modified magnetites were characterized by the Fourier Transform Infrared (FTIR) spectroscopy, the X-Ray Diffraction (XRD) and the Scanning Electron Microscopy (SEM). More over, the magnetic properties were studied by using a Vibrating Sample Magnetometer (VSM). The characterization results showed that there were differences in crystalinity, surface morphology and magnetic properties of products that were formed by one and two-step reactions.


Sign in / Sign up

Export Citation Format

Share Document