Conductivity of impurity graphene nanoribbons and gate electric field

2017 ◽  
Vol 31 (36) ◽  
pp. 1750340
Author(s):  
Natalia Konobeeva ◽  
Mikhail Belonenko

In this paper, we investigate the influence of a gate electric field on the tunneling current for the contact of impurity graphene nanoribbon with a metal or quantum dots. Based on the Hamiltonian for graphene in the tight-binding approximation, the density of states is calculated, which allows us to obtain a tunneling current. We analyze the effect of the field magnitude on the detecting possibility of an impurity in the graphene nanoribbon. A sufficient change of current–voltage characteristic (CVC) of the contact is observed, with an increase in the constant electric field applied parallel to the nanoribbon plane.

2018 ◽  
Vol 32 (29) ◽  
pp. 1850323
Author(s):  
Ting Ting Zhang ◽  
Cai Juan Xia ◽  
Bo Qun Zhang ◽  
Xiao Feng Lu ◽  
Yang Liu ◽  
...  

The electronic transport properties of oligo p-phenylenevinylene (OPV) molecule sandwiched with symmetrical or asymmetric tailoring graphene nanoribbons (GNRs) electrodes are investigated by nonequilibrium Green’s function in combination with density functional theory. The results show that different tailored GNRs electrodes can modulate the current–voltage characteristic of molecular devices. The rectifying behavior can be observed with respect to electrodes, and the maximum rectification ratio can reach to 14.2 in the asymmetric AC–ZZ GNRs and ZZ–AC–ZZ GNRs electrodes system. In addition, the obvious negative differential resistance can be observed in the symmetrical AC-ZZ GNRs system.


2007 ◽  
Vol 21 (27) ◽  
pp. 1863-1867 ◽  
Author(s):  
SONG YUE

The evolution of the current-voltage characteristic in K 0.3 MoO 3 was observed intuitively with the presence of current cycling. No variation of the ohmic conductivity was distinguished, while the threshold field for the charge density waves depinning exhibited distinct enhancement with the current cycling. These results were attributed to the electric field-assisted metastable states' relaxation of the charge density waves.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Meisam Rahmani ◽  
Razali Ismail ◽  
Mohammad Taghi Ahmadi ◽  
Mohammad Javad Kiani ◽  
Mehdi Saeidmanesh ◽  
...  

Bilayer graphene nanoribbon is a promising material with outstanding physical and electrical properties that offers a wide range of opportunities for advanced applications in future nanoelectronics. In this study, the application of bilayer graphene nanoribbon in schottky-barrier diode is explored due to its different stacking arrangements. In other words, bilayer graphene nanoribbon schottky-barrier diode is proposed as a result of contact between a semiconductor (AB stacking) and metal (AA stacking) layers. To this end, an analytical model joint with numerical solution of carrier concentration for bilayer graphene nanoribbon in the degenerate and nondegenerate regimes is presented. Moreover, to determine the proposed diode performance, the carrier concentration model is adopted to derive the current-voltage characteristic of the device. The simulated results indicate a strong bilayer graphene nanoribbon geometry and temperature dependence of current-voltage characteristic showing that the forward current of the diode rises by increasing of width. In addition, the lower value of turn-on voltage appears as the more temperature increases. Finally, comparative study indicates that the proposed diode has a better performance compared to the silicon schottky diode, graphene nanoribbon homo-junction contact, and graphene-silicon schottky diode in terms of electrical parameters such as turn-on voltage and forward current.


2017 ◽  
Vol 31 (21) ◽  
pp. 1750146 ◽  
Author(s):  
Xiongwen Chen ◽  
Zhengang Shi ◽  
Baoju Chen ◽  
Kehui Song

We study the electronic local distribution and transports in pristine armchair-edge silicene nanoribbons (ASiNRs) based on the tight-binding approximation. By calculating the local densities of states at different sites and the bond current between two adjacent sites, we show that comparing to the pristine armchair-edge graphene nanoribbons, a similar “[Formula: see text]” rule and multiple low-electron transport channels exist in the pristine [Formula: see text]-ASiNRs. However, differently, they are controllable to appear and disappear by applying an electric field perpendicular to the ribbon plane. Therefore, one can manipulate the semiconducting channels and realize the current switch “on/off,” unchanging their structures. Moreover, the results are robust against the edge-passivation and a few structural defects, which ensures their stability for the practical application in the silicene-based device.


Author(s):  
Alexander A. Logachev ◽  
Irina N. Poluyanova ◽  
Konstantin K. Zabello ◽  
Sergey M. Shkol'nik

Sign in / Sign up

Export Citation Format

Share Document