NAND/AND/NOT logic gates response in series of mesoscopic quantum rings

2019 ◽  
Vol 33 (34) ◽  
pp. 1950431 ◽  
Author(s):  
E. Dehghan ◽  
D. Sanavi Khoshnoud ◽  
A. S. Naeimi

There is a special class of logic gates, called universal gates, any one of which is sufficient to express any desired computation. The NAND gate is truly global, given that it is already known, each Boolean function can be represented in a circuit that contains only NOT and AND gates, it is sufficient to show that these gates can be defined from the NAND gate. The effect of Rashba spin-orbit interaction (SOI) on the gate response and spin current density in a series of non-interacting one-dimensional rings connected to some leads is studied theoretically within the waveguide theory. The gates response and spin current density are computed in geometry of the system containing two terminal double quantum rings. Also, the presence and absence of Rashba SOI are treated as the two inputs of the AND/NAND/NOT gates. Furthermore, simulation of the device performance demonstrates that vital improvement toward spintronic applications can be achieved by optimizing device parameters such as magnetic flux and Rashba coefficient.

2010 ◽  
Vol 24 (07) ◽  
pp. 649-656
Author(s):  
XI FU ◽  
GUANGHUI ZHOU

We investigate theoretically the spin current and spin current induced electric field in a weak Rashba spin-orbit coupling quantum wire (QW) using a definition for spin current by means of scattering matrix. It is found that there exists two non-zero linear spin current density elements which have oscillation peaks at the center of QW and their strengths can be changed by the number of propagation modes and Rashba constant, respectively. Moreover, the spin current induced electric field has also been calculated and its strength is measurable with present technology with which can be used to detect spin current.


2011 ◽  
Vol 32 (2) ◽  
pp. 022001
Author(s):  
Jian Du ◽  
Suxin Wang ◽  
Jianghong Pan

2007 ◽  
Vol 91 (13) ◽  
pp. 133116 ◽  
Author(s):  
A. Mühle ◽  
W. Wegscheider ◽  
R. J. Haug
Keyword(s):  

Author(s):  
C. C. Kuo ◽  
W. E. Lear ◽  
J. H. Fletcher ◽  
O. D. Crisalle

A constructive critique and a suite of proposed improvements for a recent one-dimensional semianalytical model of a direct methanol fuel cell are presented for the purpose of improving the predictive ability of the modeling approach. The model produces a polarization curve for a fuel cell system comprised of a single membrane-electrode assembly, based on a semianalytical one-dimensional solution of the steady-state methanol concentration profile across relevant layers of the membrane electrode assembly. The first improvement proposed is a more precise numerical solution method for an implicit equation that describes the overall current density, leading to better convergence properties. A second improvement is a new technique for identifying the maximum achievable current density, an important piece of information necessary to avoid divergence of the implicit-equation solver. Third, a modeling improvement is introduced through the adoption of a linear ion-conductivity model that enhances the ability to better match experimental polarization-curve data at high current densities. Fourth, a systematic method is advanced for extracting anodic and cathodic transfer-coefficient parameters from experimental data via a least-squares regression procedure, eliminating a potentially significant parameter estimation error. Finally, this study determines that the methanol concentration boundary condition imposed on the membrane side of the membrane-cathode interface plays a critical role in the model’s ability to predict the limiting current density. Furthermore, the study argues for the need to carry out additional experimental work to identify more meaningful boundary concentration values realized by the cell.


2006 ◽  
Vol 23 (11) ◽  
pp. 3065-3068 ◽  
Author(s):  
Wang Yi ◽  
Sheng Wei ◽  
Zhou Guang-Hui

Author(s):  
B. A. Haberman ◽  
A. J. Marquis

A typical segmented-in-series tubular solid oxide fuel cell (SOFC) consists of flattened ceramic support tubes with rows of electrochemical cells fabricated on their outer surfaces connected in series. It is desirable to design this type of SOFC to operate with a uniform electrolyte current density distribution to make the most efficient use of the available space and possibly to help minimize the onset of cell component degradation. Predicting the electrolyte current density distribution requires an understanding of the many physical and electrochemical processes occurring, and these are simulated using the newly developed SOHAB multiphysics computer code. Of particular interest is the interaction between the current flow within the cells and the consumption of fuel from an adjacent internal gas supply channel. Initial simulations showed that in the absence of fuel consumption, ionic current tends to concentrate near the leading edge of each electrolyte. Further simulations that included fuel consumption showed that the choice of fuel flow direction can have a strong effect on the current flow distribution. The electrolyte current density distribution is biased toward the upstream fuel flow direction because ionic current preferentially flows in regions rich in fuel. Thus the correct choice of fuel flow direction can lead to more uniform electrolyte current density distributions, and hence it is an important design consideration for tubular segmented-in-series SOFCs. Overall, it was found that the choice of fuel flow direction has a negligible effect on the output voltage of the fuel cells.


2010 ◽  
Vol 7 (11-12) ◽  
pp. 2608-2611 ◽  
Author(s):  
José Maria Escartin ◽  
Francesc Malet ◽  
Marti Pi ◽  
Manuel Barranco

Sign in / Sign up

Export Citation Format

Share Document