A study on the mechanical properties of forged high chrome steel heat resistant materials

2020 ◽  
Vol 34 (07n09) ◽  
pp. 2040036
Author(s):  
Il Heon Jeong ◽  
Yeong Min Park ◽  
Jae Uk Yoo ◽  
Tae Gyu Kim

High chrome steel (12 Cr-steel) is the material found in engine blade which required high durability and long service life at high temperatures. Therefore, it is important to produce durable and high strength 12 Cr-steel. In this study, effect of different tempering temperature on microstructure of 12 Cr-steel specimens were investigated. First, the specimens were heat treated to 1070[Formula: see text]C and quenched in an acidic solution. Then they were tempered at different temperature at 470[Formula: see text]C and 690[Formula: see text]C. Analyses on mechanical properties such as hardness, yield strength, tensile stress were performed. It is found that specimen at lower temperature (470[Formula: see text]C) has improved mechanical properties.

2001 ◽  
Vol 56 (6) ◽  
pp. 38
Author(s):  
K.S. Pandey ◽  
P. Aravinden

2015 ◽  
Vol 815 ◽  
pp. 643-648
Author(s):  
Yin Zhu ◽  
Jiong Xin Zhao

The effect of heat setting methods on the structures and mechanical properties of high strength polyvinyl alcohol (PVA) fibre is studied in this article. The microstructure and mechanical properties of heat treated PVA fibre is investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), and single fibre electronic tensile strength tester. Results show that the heat setting method with constant tension is a good heat setting method which can largely enhance the tensile strength of PVA fibre. During the heat setting process, the mechanical properties of PVA fibre are greatly affected by the temperature, tension and setting time. When the temperature is 220°C, tension is 5cN/dtex and setting time is 90sec, the tensile strength of PVA fibre increases from 12.0cN/dtex to 16.4cN/dtex in compare with the PVA fibre without heat setting


2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


2018 ◽  
Vol 284 ◽  
pp. 351-356 ◽  
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength aerospace steel alloyed with Cr, Mn, Si, Ni, W and Mo was studied. The austenite transformations under continuous cooling conditions were investigated using the dilatometer analysis at the cooling rates 0.1...30 °C/s. The mechanical properties of the studied steel were determined after the conventional quenching and tempering heat treatment. The dependences of the mechanical properties on the tempering temperature were obtained. The novel quenching and partitioning heat treatment was applied to the steel under consideration. The microstructure and the mechanical properties were studied after three different modes of the quenching and partitioning (QP) treatment: single-stage QP, two-stage QP and single-stage QP with subsequent tempering (QPT).


1967 ◽  
Vol 8 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Shogo Kanazawa ◽  
Akira Nakashima ◽  
Kentaro Okamoto ◽  
Koji Tanabe ◽  
Susumu Nakazawa

2013 ◽  
Vol 791-793 ◽  
pp. 440-443
Author(s):  
Hong Bo Li ◽  
Jing Wang ◽  
Han Chi Cheng ◽  
Chun Jie Li ◽  
Xing Jun Su

This paper mainly studied the high temperature quenching oil quenching, tempering temperature on the influence of high strength steel mechanical properties of wear resistant. The results show that high strength and toughness wear-resistant cast steel with 880°C× 30min after oil quenching, the hardness of 38.6HRC steel, the impact toughness value reaches 40.18J/cm2. After 200°C, 400°C and 600°C tempering, with the increase of the tempering temperature, the hardness decreased linearly, as by 600°C tempering, the hardness has been reduced to 22.3HRC. Impact toughness with the tempering temperature, the overall upward trend, the impact toughness of some reduced at 400°C, the highest impact toughness value reaches 113.34J/cm2. From the fracture morphology can be seen, with the increase of tempering temperature, ductile fracture increased, by 600°C tempering is dimple fracture, obviously can not see the traces of brittle fracture.


Sign in / Sign up

Export Citation Format

Share Document