Coupled sine-Gordon systems in living cellular structure

2020 ◽  
Vol 34 (05) ◽  
pp. 2050070
Author(s):  
Y. Hanif ◽  
U. Saleem

In this paper, we present a coupled sine-Gordon (CSG) system, which describes the dynamics of two deoxyribonucleic acid (DNA) twisting strands in open configuration. We investigate the associated linear eigenvalue problem of the CSG system and obtain generalized formulae for multiple soliton solutions by employing the Darboux transformation (DT). Explicit expressions of one- and two-kink and line soliton solutions, single breather and first-order degenerate solutions are obtained by using particular solutions to the associated linear eigenvalue problem. We also present the dynamics of the different solutions.

Open Physics ◽  
2011 ◽  
Vol 9 (1) ◽  
Author(s):  
Abdul-Majid Wazwaz

AbstractIn this work, two new completely integrable extensions of the Kadomtsev-Petviashvili (eKP) equation are developed. Multiple soliton solutions and multiple singular soliton solutions are derived to demonstrate the compatibility of the extensions of the KP equation.


2011 ◽  
Vol 66 (10-11) ◽  
pp. 625-631
Author(s):  
Abdul-Majid Wazwaz

We make use of Hirota’s bilinear method with computer symbolic computation to study a variety of coupled modified Korteweg-de Vries (mKdV) equations. Multiple soliton solutions and multiple singular soliton solutions are obtained for each coupled equation. The resonance phenomenon of each coupled mKdV equation is proved not to exist.


2010 ◽  
Vol 65 (6-7) ◽  
pp. 549-554
Author(s):  
Ramaswamy Radha ◽  
Vaduganathan Ramesh Kumar

In this paper, we investigate the inhomogeneous higher-order nonlinear Schr¨odinger (NLS) equation governing the femtosecond optical pulse propagation in inhomogeneous fibers using gauge transformation and generate bright soliton solutions from the associated linear eigenvalue problem. We observe that the amplitude of the bright solitons depends on the group velocity dispersion (GVD) and the self-phase modulation (SPM) while its velocity is dictated by the third-order dispersion (TOD) and GVD. We have shown how the interplay between GVD, SPM, and TOD can be profitably exploited to change soliton width, amplitude (intensity), shape, phase, velocity, and energy for an effective femtosecond soliton management. The highlight of our paper is the identification of ‘optical similaritons’ arising by virtue of higher-order effects in the femtosecond regime.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose This study aims to develop two integrable shallow water wave equations, of higher-dimensions, and with constant and time-dependent coefficients, respectively. The author derives multiple soliton solutions and a class of lump solutions which are rationally localized in all directions in space. Design/methodology/approach The author uses the simplified Hirota’s method and lump technique for determining multiple soliton solutions and lump solutions as well. The author shows that the developed (2+1)- and (3+1)-dimensional models are completely integrable in in the Painlené sense. Findings The paper reports new Painlevé-integrable extended equations which belong to the shallow water wave medium. Research limitations/implications The author addresses the integrability features of this model via using the Painlevé analysis. The author reports multiple soliton solutions for this equation by using the simplified Hirota’s method. Practical implications The obtained lump solutions include free parameters; some parameters are related to the translation invariance and the other parameters satisfy a non-zero determinant condition. Social implications The work presents useful algorithms for constructing new integrable equations and for the determination of lump solutions. Originality/value The paper presents an original work with newly developed integrable equations and shows useful findings of solitary waves and lump solutions.


2021 ◽  
pp. 2150277
Author(s):  
Hongcai Ma ◽  
Qiaoxin Cheng ◽  
Aiping Deng

[Formula: see text]-soliton solutions are derived for a (3 + 1)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) equation by using bilinear transformation. Some local waves such as period soliton, line soliton, lump soliton and their interaction are constructed by selecting specific parameters on the multi-soliton solutions. By selecting special constraints on the two soliton solutions, period and lump soliton solution can be obtained; three solitons can reduce to the interaction solution between period soliton and line soliton or lump soliton and line soliton under special parameters; the interaction solution among period soliton and two line solitons, or the interaction solution for two period solitons or two lump solitons via taking specific constraints from four soliton solutions. Finally, some images of the results are drawn, and their dynamic behavior is analyzed.


2018 ◽  
Vol 28 (11) ◽  
pp. 2681-2687 ◽  
Author(s):  
Abdul-Majid Wazwaz

Purpose The purpose of this paper is concerned with developing a (2 + 1)-dimensional Benjamin–Ono equation. The study shows that multiple soliton solutions exist and multiple complex soliton solutions exist for this equation. Design/methodology/approach The proposed model has been handled by using the Hirota’s method. Other techniques were used to obtain traveling wave solutions. Findings The examined extension of the Benjamin–Ono model features interesting results in propagation of waves and fluid flow. Research limitations/implications The paper presents a new efficient algorithm for constructing extended models which give a variety of multiple soliton solutions. Practical implications This work is entirely new and provides new findings, where although the new model gives multiple soliton solutions, it is nonintegrable. Originality/value The work develops two complete sets of multiple soliton solutions, the first set is real solitons, whereas the second set is complex solitons.


Proc. R. Soc. Lond . A 359, 479-495 (1978) Exact, multiple soliton solutions of the double sine Gordon equation By P. G. Burt Equation (A 10), exponent of P should read - 1/(2 p ). Equation (A 15), exponents of P should read - 1/(2 p ) and - (1/(2 p ) + 1) respectively. Proc. R. Soc. Lond . A 362, 281-303 (1978) The Bakerian Lecture, 1977: in vitro models for photosynthesis By Sir George Porter, F. R. S. Page 300, line —8: for λ < 455 nm read λ > 455 nm


Sign in / Sign up

Export Citation Format

Share Document