N-soliton solutions and localized wave interaction solutions of a (3 + 1)-dimensional potential-Yu–Toda–Sasa–Fukuyamaf equation

2021 ◽  
pp. 2150277
Author(s):  
Hongcai Ma ◽  
Qiaoxin Cheng ◽  
Aiping Deng

[Formula: see text]-soliton solutions are derived for a (3 + 1)-dimensional potential-Yu–Toda–Sasa–Fukuyama (YTSF) equation by using bilinear transformation. Some local waves such as period soliton, line soliton, lump soliton and their interaction are constructed by selecting specific parameters on the multi-soliton solutions. By selecting special constraints on the two soliton solutions, period and lump soliton solution can be obtained; three solitons can reduce to the interaction solution between period soliton and line soliton or lump soliton and line soliton under special parameters; the interaction solution among period soliton and two line solitons, or the interaction solution for two period solitons or two lump solitons via taking specific constraints from four soliton solutions. Finally, some images of the results are drawn, and their dynamic behavior is analyzed.

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Jin-Fu Liang ◽  
Xun Wang

A consistent Riccati expansion (CRE) method is proposed for obtaining interaction solutions to the modified Korteweg-de Vries (mKdV) equation. Using the CRE method, it is shown that interaction solutions such as the soliton-tangent (or soliton-cotangent) wave cannot be constructed for the mKdV equation. More importantly, exact soliton-cnoidal periodic wave interaction solutions are presented. While soliton-cnoidal interaction solutions were found to degenerate to special resonant soliton solutions for the values of modulus (n) closer to one (upper bound of modulus) in the Jacobi elliptic function, a normal kink-shaped soliton was observed for values of n closer to zero (lower bound).


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640013 ◽  
Author(s):  
Bang-Xing Guo ◽  
Ji Lin

We study the Panilevé property of the coupled equations describing the interaction of few-cycle-pulse with nonlinear medium. And we use the consistent tanh expansion (CTE) method to search for exact interaction soliton solutions of the coupled equations. Many interaction solutions are obtained, such as the one kink-one periodic wave interaction solution, one kink-two periodic waves interaction solution, one kink-one dipole soliton interaction solution, one kink-two dipole solitons interaction solution, and one kink-soliton-one periodic wave interaction solution. We also obtain the kink–kink interaction by using Painlevé truncated expansion method.


2020 ◽  
pp. 2150106
Author(s):  
Jiamin Zhu ◽  
Bo Wang ◽  
Zhengyi Ma ◽  
Jinxi Fei

The [Formula: see text]-soliton solutions of the (2+1)-dimensional Kadomtsev–Petviashvili hierarchy are first constructed. One soliton molecule satisfies the velocity resonance condition, the breather with the periodic solitary wave, the lump soliton localized in all directions in the space are showed successively for [Formula: see text]. Interaction of one soliton molecule and a line soliton, the soliton molecule hybrid a line soliton with the breather/lump soliton are presented for [Formula: see text]. Moreover, the elastic interaction between two-soliton molecules, the interaction between one soliton molecule, and a breather and the elastic collision between the lump soliton and one soliton molecule are also derived for [Formula: see text] by applying the velocity resonance, the module resonance of wave number, and the long-wave limit ideas. Figures are presented to demonstrate these dynamics features.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Bo Ren ◽  
Jun Yu ◽  
Xi-Zhong Liu

The consistent tanh expansion (CTE) method has been succeeded to apply to the nonintegrable (3+1)-dimensional Kadomtsev-Petviashvili (KP) and (2+1)-dimensional Boussinesq equations. The interaction solution between one soliton and one resonant soliton solution for the (3+1)-dimensional KP equation is obtained with CTE method. The interaction solutions among one soliton and cnoidal waves for these two equations are also explicitly given. These interaction solutions are investigated in both analytical and graphical ways. It demonstrates that the interactions between one soliton and cnoidal waves are elastic with phase shifts.


2019 ◽  
Vol 33 (16) ◽  
pp. 1950174 ◽  
Author(s):  
Jian-Hong Zhuang ◽  
Yaqing Liu ◽  
Xin Chen ◽  
Juan-Juan Wu ◽  
Xiao-Yong Wen

In this paper, the (2[Formula: see text]+[Formula: see text]1)-dimensional CDGKS equation is studied and its diverse soliton solutions consisting of line soliton, periodic soliton and lump soliton with different parameters are derived based on the Hirota bilinear method and long-wave limit method. Based on exact solution formulae with different parameters, the interaction between line soliton and periodic soliton, the interaction between line soliton and lump soliton, as well as the interaction between periodic soliton and lump soliton are illustrated. According to the dynamical behaviors, it can be found that the effects of different parameters are on the propagation direction and shapes. Novel soliton interaction phenomena are also observed.


2013 ◽  
Vol 22 (02) ◽  
pp. 1350015 ◽  
Author(s):  
AHMET BEKIR ◽  
ESIN AKSOY ◽  
ÖZKAN GÜNER

This paper, studies the long-short-wave interaction (LS) equation. An optical soliton solution is obtained by the exp-function method and the ansatz method. Subsequently, we formally derive the dark (topological) soliton solutions for this equation. By using the exp-function method, some additional solutions will be derived. The physical parameters in the soliton solutions of ansatz method: amplitude, inverse width, and velocity are obtained as functions of the dependent model coefficients.


2021 ◽  
Author(s):  
Dipankar Kumar ◽  
Md. Nuruzzaman ◽  
Gour Chandra Paul ◽  
Ashabul Hoque

Abstract The Boussinesq equation (BqE) has been of considerable interest in coastal and ocean engineering models for simulating surface water waves in shallow seas and harbors, tsunami wave propagation, wave over-topping, inundation, and near-shore wave process in which nonlinearity and dispersion effects are taken into consideration. The study deals with the dynamics of localized waves and their interaction solutions to a dimensionally reduced (2 + 1)-dimensional BqE from N-soliton solutions with the use of Hirota’s bilinear method (HBM). Taking the long-wave limit approach in coordination with some constraint parameters in the N-soliton solutions, the localized waves (i.e., soliton, breather, lump, and rogue waves) and their interaction solutions are constructed. The interaction solutions can be obtained among localized waves, such as (i) one breather or one lump from the two solitons, (ii) one stripe and one breather, and one stripe and one lump from the three solitons, and (iii) two stripes and one breather, one lump and one periodic breather, two stripes and one lump, two breathers, and two lumps from the four solitons. It is to be found that all interactions among the solitons are elastic. The energy, phase shift, shape, and propagation direction of these localized waves and their interaction solutions can be influenced and controlled by the involved constraint parameters. The dynamical characteristics of these localized waves and their interaction solutions are demonstrated through some 3D and density graphs. The outcomes achieved in this study can be used to illustrate the wave interaction phenomena in shallow water.


2019 ◽  
Vol 33 (09) ◽  
pp. 1950101 ◽  
Author(s):  
Yunfei Yue ◽  
Yong Chen

In this paper, a (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear evolution equation is studied via the Hirota method. Soliton, lump, breather and rogue wave, as four types of localized waves, are derived. The obtained N-soliton solutions are dark solitons with some constrained parameters. General breathers, line breathers, two-order breathers, interaction solutions between the dark soliton and general breather or line breather are constructed by choosing suitable parameters on the soliton solution. By the long wave limit method on the soliton solution, some new lump and rogue wave solutions are obtained. In particular, dark lumps, interaction solutions between dark soliton and dark lump, two dark lumps are exhibited. In addition, three types of solutions related with rogue waves are also exhibited including line rogue wave, two-order line rogue waves, interaction solutions between dark soliton and dark lump or line rogue wave.


Author(s):  
Allen Parker

In the concluding study (designated III), we modify the direct bilinear transformation method for solving the Camassa–Holm (CH) equation that was set down in part II of this work. We demonstrate its efficacy for finding analytic multisoliton solutions of the equation and give explicit expressions for the first few solitons. It is shown that, at each order N , the N -soliton has a non-standard representation that is characterized by an ‘extra’ parameter. The stucture of this parameter is investigated and a procedure for constructing the general N -soliton solution of the CH equation is presented.


Sign in / Sign up

Export Citation Format

Share Document