Generating coexisting attractors from a new four-dimensional chaotic system

2020 ◽  
pp. 2150035
Author(s):  
Yan-Mei Hu ◽  
Bang-Cheng Lai

This paper introduces a new four-dimensional chaotic system with a unique unstable equilibrium and multiple coexisting attractors. The dynamic evolution analysis shows that the system concurrently generates two symmetric chaotic attractors for fixed parameter values. Based on this system, an effective method is established to construct an infinite number of coexisting chaotic attractors. It shows that the introduction of some non-linear functions with multiple zeros can increase the equilibria and inspire the generation of coexisting attractor of the system. Numerical simulations verify the availability of the method.

2017 ◽  
Vol 27 (09) ◽  
pp. 1750142 ◽  
Author(s):  
Qiang Lai ◽  
Akif Akgul ◽  
Xiao-Wen Zhao ◽  
Huiqin Pei

An unique 4D autonomous chaotic system with signum function term is proposed in this paper. The system has four unstable equilibria and various types of coexisting attractors appear. Four-wing and four-scroll strange attractors are observed in the system and they will be broken into two coexisting butterfly attractors and two coexisting double-scroll attractors with the variation of the parameters. Numerical simulation shows that the system has various types of multiple coexisting attractors including two butterfly attractors with four limit cycles, two double-scroll attractors with a limit cycle, four single-scroll strange attractors, four limit cycles with regard to different parameters and initial values. The coexistence of the attractors is determined by the bifurcation diagrams. The chaotic and hyperchaotic properties of the attractors are verified by the Lyapunov exponents. Moreover, we present an electronic circuit to experimentally realize the dynamic behavior of the system.


2018 ◽  
Vol 8 (11) ◽  
pp. 2132 ◽  
Author(s):  
Xiong Wang ◽  
Akif Akgul ◽  
Unal Cavusoglu ◽  
Viet-Thanh Pham ◽  
Duy Vo Hoang ◽  
...  

Systems with many equilibrium points have attracted considerable interest recently. A chaotic system with a line equilibrium has been studied in this work. The system has infinite equilibria and exhibits coexisting chaotic attractors. The system with an infinite number of equilibria has been realized by an electronic circuit, which confirms the feasibility of the system. Based on such a system, we have developed a new S-Box generation algorithm. With the developed algorithm, two new S-Boxes are produced. Performance tests of S-Boxes are performed. The tests have shown that proposed S-Boxes have good performance results.


2020 ◽  
Vol 25 (4) ◽  
pp. 78
Author(s):  
Anouk F. G. Pelzer ◽  
Alef E. Sterk

In this paper, we study a family of dynamical systems with circulant symmetry, which are obtained from the Lorenz-96 model by modifying its nonlinear terms. For each member of this family, the dimension n can be arbitrarily chosen and a forcing parameter F acts as a bifurcation parameter. The primary focus in this paper is on the occurrence of finite cascades of pitchfork bifurcations, where the length of such a cascade depends on the divisibility properties of the dimension n. A particularly intriguing aspect of this phenomenon is that the parameter values F of the pitchfork bifurcations seem to satisfy the Feigenbaum scaling law. Further bifurcations can lead to the coexistence of periodic or chaotic attractors. We also describe scenarios in which the number of coexisting attractors can be reduced through collisions with an equilibrium.


Author(s):  
Shaohui Yan ◽  
Zhenlong Song ◽  
Wanlin Shi

This paper introduces a charge-controlled memristor based on the classical Chuas circuit. It also designs a novel four-dimensional chaotic system and investigates its complex dynamics, including phase portrait, Lyapunov exponent spectrum, bifurcation diagram, equilibrium point, dissipation and stability. The system appears as single-wing, double-wings chaotic attractors and the Lyapunov exponent spectrum of the system is symmetric with respect to the initial value. In addition, symmetric and asymmetric coexisting attractors are generated by changing the initial value and parameters. The findings indicate that the circuit system is equipped with excellent multi-stability. Finally, the circuit is implemented in Field Programmable Gate Array (FPGA) and analog circuits.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Mingshu Chen ◽  
Zhen Wang ◽  
Xiaojuan Zhang ◽  
Huaigu Tian

Chaotic attractors with no equilibria, with an unstable node, and with stable node-focus are presented in this paper. The conservative solutions are investigated by the semianalytical and seminumerical method. Furthermore, multiple coexisting attractors are investigated, and circuit is carried out. To study the system’s global structure, dynamics at infinity for this new chaotic system are studied using Poincaré compactification of polynomial vector fields in R 3 . Meanwhile, the dynamics near the infinity of the singularities are obtained by reducing the system’s dimensions on a Poincaré ball. The averaging theory analyzes the periodic solution’s stability or instability that bifurcates from Hopf-zero bifurcation.


2014 ◽  
Vol 19 (2) ◽  
pp. 272-285 ◽  
Author(s):  
Xiaowen Luo ◽  
Chunhua Wang ◽  
Zhao Wan

Due to the dynamic characteristics of the Lorenz system, multi-wing chaotic systems are still confined in the positive half-space and fail to break the threshold limit. In this paper, a new approach for generating complex grid multi-wing attractors that can break the threshold limit via a novel nonlinear modulating function is proposed from the firstly proposed double-wing chaotic system. The proposed method is different from that of classical multi-scroll chaotic attractors generated by odd-symmetric multi-segment linear functions from Chua system. The new system is autonomous and can generate various grid multi-wing butterfly chaotic attractors without requiring any external forcing, it also can produce grid multi-wing both on the xz-plane and yz-plane. Basic properties of the new system such as dissipation property, equilibrium, stability, the Lyapunov exponent spectrum and bifurcation diagram are introduced by numerical simulation, theoretical analysis and circuit experiment, which confirm that the multi-wing attractors chaotic system has more rich and complicated chaotic dynamics. Finally, a novel module-based unified circuit is designed which provides some principles and guidelines for future circuitry design and engineering application. The circuit experimental results are consistent with the numerical simulation results. 


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Viet-Thanh Pham ◽  
Christos Volos ◽  
Sundarapandian Vaidyanathan ◽  
Xiong Wang

Discovering systems with hidden attractors is a challenging topic which has received considerable interest of the scientific community recently. This work introduces a new chaotic system having hidden chaotic attractors with an infinite number of equilibrium points. We have studied dynamical properties of such special system via equilibrium analysis, bifurcation diagram, and maximal Lyapunov exponents. In order to confirm the system’s chaotic behavior, the findings of topological horseshoes for the system are presented. In addition, the possibility of synchronization of two new chaotic systems with infinite equilibria is investigated by using adaptive control.


Sign in / Sign up

Export Citation Format

Share Document