Effects of temperature and FCC phase size on the deformation mechanism of pure titanium nanopillars: A molecular dynamics simulation

2021 ◽  
pp. 2150253
Author(s):  
Dan Yang ◽  
Junqiang Ren ◽  
Qi Wang ◽  
Xuefeng Lu ◽  
Qingfeng Lei ◽  
...  

The mechanism of plastic deformation under tensile and compressive loading of hexagonal close-packed (HCP)/face-centered cubic (FCC) biphasic titanium (Ti) nanopillars at different temperatures (70 K, 150 K, 300 K and 400 K) and different FCC phase sizes (2 nm, 4 nm, 6 nm and 8 nm) was investigated by molecular dynamics (MD). The plastic deformation is mainly concentrated in the FCC phase during compression loading. The HCP/FCC interface is the main source of [Formula: see text] Shockley partial dislocations. As the temperature increases, the dislocation nucleation rate increases and the surface dislocation source is activated. During tensile loading, it is more likely that the Shockley partial dislocations react with each other in the FCC phase to form Lomer–Cottrell sessile dislocations and stacking fault (SF) nets. When the temperature is reduced to 70 K, tensile twins are formed at the phase interface. The plastic deformation is dominated by twins and [Formula: see text] dislocation slip occurs in the HCP phase. The effect of the FCC phase size on the plastic deformation mechanism of the nanopillar is strong. The FCC phase is transformed into the HCP phase when the FCC phase size in the nanopillar is reduced to 4 nm under compressive loading. However, twin deformation occurs at the HCP/FCC interface when the FCC phase size is reduced to 2 nm under tensile loading.

RSC Advances ◽  
2016 ◽  
Vol 6 (34) ◽  
pp. 28792-28800 ◽  
Author(s):  
Chong Qiao ◽  
Yanli Zhou ◽  
Xiaolin Cai ◽  
Weiyang Yu ◽  
Bingjie Du ◽  
...  

The plastic deformation mechanism of iron (Fe) nanowires under torsion is studied using the molecular dynamics (MD) method by applying an external driving force at a constant torsion speed.


2001 ◽  
Vol 695 ◽  
Author(s):  
T. Nozaki ◽  
Y. Kogure ◽  
Masao Doyama

ABSTRACTWidely accepted model of bending of a single crystal suggests that edge dislocations are introduced from both the compressed surface and extended surface. The present study examined this model by molecular dynamics using an embedded potential. Shockley partial dislocations are created on the compressed surface. Due to the characteristics of inter atomic potential, the stress on the compression surface is higher than that on the extended surface.


2007 ◽  
Vol 129 ◽  
pp. 125-130 ◽  
Author(s):  
Alexander V. Evteev ◽  
Elena V. Levchenko ◽  
Irina V. Belova ◽  
Graeme E. Murch

Molecular dynamics simulation using the embedded-atom method is applied to study defect formation and distribution in a hollow Pd nanosphere. It is established that besides vacancies, which can nucleate on the inner or external surfaces, at the external surface, other defects (Shockley partial dislocations, twins and stacking faults) form due to its significant reconstruction by means of a/6〈112〉 shears of atomic rows. The density of the defects on the external surface grows with decreasing nanoshell size. It is demonstrated that Shockley partial dislocations can act as vehicles for the transfer of material from the external surface to the inner surface of the nanoshell thus leading to shrinking. It is shown that the vacancy concentration is higher near both surfaces than in the bulk of the nanoshell.


2021 ◽  
Vol 127 (6) ◽  
Author(s):  
Qianhua Yang ◽  
Chun Xue ◽  
Zhibing Chu ◽  
Yugui Li ◽  
Lifeng Ma

AbstractMagnesium alloys have a wide range of application values. To design and develop magnesium alloys with excellent mechanical properties, it is necessary to study the deformation process. In this paper, the uniaxial compression (UC) process of AZ31 magnesium alloy with different solute atom content is simulated by the molecular dynamics method. The effect of the solute atom on the uniaxial compression of magnesium alloy is investigated. It is found that solute atoms can inhibit the grain refinement of magnesium, can effectively improve the plastic strength of the alloy, can change the lattice distortion during uniaxial compression of magnesium alloy, can inhibit the generation of BCC structure, and can slow down the increase of FCC structure and dislocation density. The direction of the FCC structure diffusion is 90° to the grain boundary direction. Shockley partial dislocations are generated around the FCC structure. The direction in which the FCC structure spreads is consistent with the direction in which Shockley partial dislocations move.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1632
Author(s):  
Jing Han ◽  
Yuanming Song ◽  
Wei Tang ◽  
Cong Wang ◽  
Liang Fang ◽  
...  

Silicon undergoes a brittle-to-ductile transition as its characteristic dimension reduces from macroscale to nanoscale. The thorough understanding of the plastic deformation mechanism of silicon at the nanoscale is still challenging, although it is essential for developing Si-based micro/nanoelectromechanical systems (MEMS/NEMS). Given the wide application of silicon in extreme conditions, it is, therefore, highly desirable to reveal the nanomechanical behavior of silicon from cryogenic temperature to elevated temperature. In this paper, large-scale molecular dynamics (MD) simulations were performed to reveal the spherical nanoindentation response and plastic deformation mechanism of (110)Si at the temperature range of 0.5 K to 573 K. Special attention was paid to the effect of temperature. Multiple pop-ins detected in load/pressure-indentation strain curves are impacted by temperature. Four featured structures induced by nanoindentation, including high-pressure phases, extrusion of α-Si, dislocations, and crack, are observed at all temperatures, consistent with experiment results. The detailed structure evolution of silicon was revealed at the atomic scale and its dependence on temperature was analyzed. Furthermore, structure changes were correlated with pop-ins in load/pressure-indentation strain curves. These results may advance our understanding of the mechanical properties of silicon.


Sign in / Sign up

Export Citation Format

Share Document