A HYBRID TWO-PHASE ALGORITHM FOR FACE RECOGNITION

Author(s):  
FRANK Y. SHIH ◽  
KAI ZHANG ◽  
YAN-YU FU

Scientists have developed numerous classifiers in the pattern recognition field, because applying a single classifier is not very conducive to achieve a high recognition rate on face databases. Problems occur when the images of the same person are classified as one class, while they are in fact different in poses, expressions, or lighting conditions. In this paper, we present a hybrid, two-phase face recognition algorithm to achieve high recognition rates on the FERET data set. The first phase is to compress the large class number database size, whereas the second phase is to perform the decision-making. We investigate a variety of combinations of the feature extraction and pattern classification methods. Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), and Support Vector Machine (SVM) are examined and tested using 700 facial images of different poses from FERET database. Experimental results show that the two combinations, LDA+LDA and LDA+SVM, outperform the other types of combinations. Meanwhile, when classifiers are considered in the two-phase face recognition, it is better to adopt the L1 distance in the first phase and the class mean in the second phase.

Author(s):  
Zhixian Chen ◽  
Jialin Tang ◽  
Xueyuan Gong ◽  
Qinglang Su

In order to improve the low accuracy of the face recognition methods in the case of e-health, this paper proposed a novel face recognition approach, which is based on convolutional neural network (CNN). In detail, through resolving the convolutional kernel, rectified linear unit (ReLU) activation function, dropout, and batch normalization, this novel approach reduces the number of parameters of the CNN model, improves the non-linearity of the CNN model, and alleviates overfitting of the CNN model. In these ways, the accuracy of face recognition is increased. In the experiments, the proposed approach is compared with principal component analysis (PCA) and support vector machine (SVM) on ORL, Cohn-Kanade, and extended Yale-B face recognition data set, and it proves that this approach is promising.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 380 ◽  
Author(s):  
Kai Ye

When identifying the key features of the network intrusion signal based on the GA-RBF algorithm (using the genetic algorithm to optimize the radial basis) to identify the key features of the network intrusion signal, the pre-processing process of the network intrusion signal data is neglected, resulting in an increase in network signal data noise, reducing the accuracy of key feature recognition. Therefore, a key feature recognition algorithm for network intrusion signals based on neural network and support vector machine is proposed. The principal component neural network (PCNN) is used to extract the characteristics of the network intrusion signal and the support vector machine multi-classifier is constructed. The feature extraction result is input into the support vector machine classifier. Combined with PCNN and SVM (Support Vector Machine) algorithms, the key features of network intrusion signals are identified. The experimental results show that the algorithm has the advantages of high precision, low false positive rate and the recognition time of key features of R2L (it is a common way of network intrusion attack) data set is only 3.18 ms.


2013 ◽  
Vol 278-280 ◽  
pp. 1211-1214
Author(s):  
Jun Ying Zeng ◽  
Jun Ying Gan ◽  
Yi Kui Zhai

A fast sparse representation face recognition algorithm based on Gabor dictionary and SL0 norm is proposed in this paper. The Gabor filters, which could effectively extract local directional features of the image at multiple scales, are less sensitive to variations of illumination, expression and camouflage. SL0 algorithm, with the advantages of calculation speed,require fewer measurement values by continuously differentiable function approximation L0 norm and reconstructed sparse signal by minimizing the approximate L0 norm. The algorithm obtain the local feature face by extracting the Gabor face feature, reduce the dimensions by principal component analysis, fast sparse classify by the SL0 norm. Under camouflage condition, The algorithm block the Gabor facial feature and improve the speed of formation of the Gabor dictionary. The experimental results on AR face database show that the proposed algorithm can improve recognition speed and recognition rate to some extent and can generalize well to the face recognition, even with a few training image per class.


2018 ◽  
Vol 119 (9/10) ◽  
pp. 529-544 ◽  
Author(s):  
Ihab Zaqout ◽  
Mones Al-Hanjori

Purpose The face recognition problem has a long history and a significant practical perspective and one of the practical applications of the theory of pattern recognition, to automatically localize the face in the image and, if necessary, identify the person in the face. Interests in the procedures underlying the process of localization and individual’s recognition are quite significant in connection with the variety of their practical application in such areas as security systems, verification, forensic expertise, teleconferences, computer games, etc. This paper aims to recognize facial images efficiently. An averaged-feature based technique is proposed to reduce the dimensions of the multi-expression facial features. The classifier model is generated using a supervised learning algorithm called a back-propagation neural network (BPNN), implemented on a MatLab R2017. The recognition rate and accuracy of the proposed methodology is comparable with other methods such as the principle component analysis and linear discriminant analysis with the same data set. In total, 150 faces subjects are selected from the Olivetti Research Laboratory (ORL) data set, resulting 95.6 and 85 per cent recognition rate and accuracy, respectively, and 165 faces subjects from the Yale data set, resulting 95.5 and 84.4 per cent recognition rate and accuracy, respectively. Design/methodology/approach Averaged-feature based approach (dimension reduction) and BPNN (generate supervised classifier). Findings The recognition rate is 95.6 per cent and recognition accuracy is 85 per cent for the ORL data set, whereas the recognition rate is 95.5 per cent and recognition accuracy is 84.4 per cent for the Yale data set. Originality/value Averaged-feature based method.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Jun Huang ◽  
Kehua Su ◽  
Jamal El-Den ◽  
Tao Hu ◽  
Junlong Li

We proposed a face recognition algorithm based on both the multilinear principal component analysis (MPCA) and linear discriminant analysis (LDA). Compared with current traditional existing face recognition methods, our approach treats face images as multidimensional tensor in order to find the optimal tensor subspace for accomplishing dimension reduction. The LDA is used to project samples to a new discriminant feature space, while theKnearest neighbor (KNN) is adopted for sample set classification. The results of our study and the developed algorithm are validated with face databases ORL, FERET, and YALE and compared with PCA, MPCA, and PCA + LDA methods, which demonstrates an improvement in face recognition accuracy.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Zhengming Li ◽  
Qi Zhu ◽  
Binglei Xie ◽  
Jian Cao ◽  
Jin Zhang

We propose a new collaborative neighbor representation algorithm for face recognition based on a revised regularized reconstruction error (RRRE), called the two-phase collaborative neighbor representation algorithm (TCNR). Specifically, the RRRE is the division of  l2-norm of reconstruction error of each class into a linear combination of  l2-norm of reconstruction coefficients of each class, which can be used to increase the discrimination information for classification. The algorithm is as follows: in the first phase, the test sample is represented as a linear combination of all the training samples by incorporating the neighbor information into the objective function. In the second phase, we use thekclasses to represent the test sample and calculate the collaborative neighbor representation coefficients. TCNR not only can preserve locality and similarity information of sparse coding but also can eliminate the side effect on the classification decision of the class that is far from the test sample. Moreover, the rationale and alternative scheme of TCNR are given. The experimental results show that TCNR algorithm achieves better performance than seven previous algorithms.


2013 ◽  
Vol 718-720 ◽  
pp. 2055-2061
Author(s):  
Cai Rang Zhaxi ◽  
Yue Guang Li

This paper firstly analyzes the principle of face recognition algorithm, studies feature selection and distance criterion problem, puts forward the defects of PCA face recognition algorithm and LDA face recognition algorithm. According to the deficiencies and shortcomings of PCA face recognition algorithm and LDA face recognition algorithm, this paper proposes a solution -- PCA+LDA. The method uses the PCA method to reduce the dimensionality of feature space, it uses Fisher linear discriminant analysis method to classification, the realization of face recognition. Experiments show that, this method can not only improve the feature extraction speed, but also the recognition rate is better than single PCA method and LDA method.


2018 ◽  
Vol 10 (2) ◽  
pp. 36 ◽  
Author(s):  
Michael James Kangas ◽  
Christina L Wilson ◽  
Raychelle M Burks ◽  
Jordyn Atwater ◽  
Rachel M Lukowicz ◽  
...  

Colorimetric sensor arrays incorporating red, green, and blue (RGB) image analysis use value changes from multiple sensors for the identification and quantification of various analytes. RGB data can be easily obtained using image analysis software such as ImageJ. Subsequent chemometric analysis is becoming a key component of colorimetric array RGB data analysis, though literature contains mainly principal component analysis (PCA) and hierarchical cluster analysis (HCA). Seeking to expand the chemometric methods toolkit for array analysis, we explored the performance of nine chemometric methods were compared for the task of classifying 631 solutions (0.1 to 3 M) of acetic acid, malonic acid, lysine, and ammonia using an eight sensor colorimetric array. PCA and LDA (linear discriminant analysis) were effective for visualizing the dataset. For classification, linear discriminant analysis (LDA), (k nearest neighbors) KNN, (soft independent modelling by class analogy) SIMCA, recursive partitioning and regression trees (RPART), and hit quality index (HQI) were very effective with each method classifying compounds with over 90% correct assignments. Support vector machines (SVM) and partial least squares – discriminant analysis (PLS-DA) struggled with ~85 and 39% correct assignments, respectively. Additional mathematical treatments of the data set, such as incrementally increasing the exponents, did not improve the performance of LDA and KNN. The literature precedence indicates that the most common methods for analyzing colorimetric arrays are PCA, LDA, HCA, and KNN. To our knowledge, this is the first report of comparing and contrasting several more diverse chemometric methods to analyze the same colorimetric array data.


Author(s):  
M.Lokeswara Reddy ◽  
P.Ramana Reddy

A face recognition algorithm based on NMPKPCA algorithm presented in this paper. The proposed algorithm when compared with conventional Principal component analysis (PCA) algorithms has an improved recognition Rate for face images with large variations in illumination, facial expressions. In this technique, first phase congruency features are extracted from the face image so that effects due to illumination variations are avoided by considering phase component of image. Then, face images are divided into small sub images and the kernel PCA approach is applied to each of these sub images. but, dividing into small or large modules creates some problems in recognition. So a special modulation called neighborhood defined modularization approach presented in this paper, so that effects due to facial variations are avoided. Then, kernel PCA has been applied to each module to extract features. So a feature extraction technique for improving recognition accuracy of a visual image based facial recognition system presented in this paper.


Sign in / Sign up

Export Citation Format

Share Document