Selectively Fine-Tuning Bayesian Network Learning Algorithm

Author(s):  
Amel Alhussan ◽  
Khalil El Hindi

In this work, we propose a Selective Fine-Tuning algorithm for Bayesian Networks (SFTBN). The aim is to enhance the accuracy of Bayesian Network (BN) classifiers by finding better estimations for the probability terms used by the classifiers. The algorithm augments a BN learning algorithm with a fine-tuning stage that aims to more accurately estimate the probability terms used by the BN. If the value of a probability term causes a misclassification of a training instances and falls outside its valid range then we update (fine-tune) that value. The amount of such an update is proportional to the distance between the value and its valid range. We use the algorithm to fine-tune several forms of BNs: the Naive Bayes (NB), Tree Augmented Naive Bayes (TAN), and Bayesian Augmented Naive Bayes (BAN) models. Our empirical experiments indicate that the SFTBN algorithm improves the classification accuracy of BN classifiers. We also generalized the original fine-tuning algorithm of Naive Bayesian (FTNB) for BN models. We empirically compare the two algorithms, and the empirical results show that while FTNB is more accurate than SFTBN for fine-tuning NB classifiers, SFTBN is more accurate for fine-tuning BNs than the adapted version of FTNB.

2014 ◽  
Vol 602-605 ◽  
pp. 1772-1777
Author(s):  
Xi Shan Zhang ◽  
Kao Li Huang ◽  
Peng Cheng Yan ◽  
Guang Yao Lian

A lot of prior information in complex system test has been accumulated. To use the prior information for complex system testability quantitative analysis, a new complex system testability modeling and analyze method based on Bayesian network is presented. First, the complex system’s testability model is built using various kind of prior information by Bayesian network learning algorithm. Then, the way of assessing the testability of complex system is provided using the inference algorithm of Bayesian network. Finally, some proper examples are provided to prove the method’s validity.


2019 ◽  
Vol 8 (4) ◽  
pp. 2240-2242

Phishing email becomes more dangers problem in online bank truncation processing problem as well as social networking sites like Facebook, twitter, Instagram. Normally phishing is carrying out by mocking of email or text embedded in email body, which will provoke users to enter their credential. Training on phishing approach is not so much effective because users are not permanently remember their training tricks, warning messages.it is totally depend on the user action which will be performed on certain time on warning messages given by software while operating any URL. In this paper, phishing email classification is enhanced using J48, Naïve Bayes and decision tree on Spam base dataset. J48 does best classification on spam base which is 97%for true positive and 0.025% false negative. Random forest work best on small dataset that is up to 5000 and number of feature are 34.but increase dataset size and reduce feature Naïve Bayes work faster.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


Smart cities which are becoming overcrowded today are making human beings life miserable and prone to more challenges on daily basis. Overcrowded is leading to vast generation of wastes contributing to air pollution and in turn is affecting health causing various diseases. Even though various measures are taken to recycle wastes, the rate at which it is being produced is becoming higher and higher. This paper deals with prediction of waste generation using Naïve Bayes machine learning algorithm(Classifier) based on the statistics of previous waste datasets. The datasets used for the future prediction are obtained from reliable sources. The implementation of the algorithm is done in Pyspark using Anaconda Jupyter. The performance of the classifier on the datasets is analyzed with confusion matrix and accuracy metric is used to rate the efficiency of the classifier. The accuracy obtained indicates that algorithm can be effectively used for real time prediction and it gives more accurate results for huge input datasets based on independence assumption.


Sign in / Sign up

Export Citation Format

Share Document