GENETIC ALGORITHMS FOR POLYGONAL APPROXIMATION OF DIGITAL CURVES

Author(s):  
PENG-YENG YIN

In this paper, three polygonal approximation approaches using genetic algorithms are proposed. The first approach approximates the digital curve by minimizing the number of sides of the polygon and the approximation error should be less than a prespecified tolerance value. The second approach minimizes the approximation error by searching for a polygon with a given number of sides. The third approach, which is more practical, determines the approximating polygon automatically without any given condition. Moreover, a learning strategy for each of the proposed genetic algorithm is presented to improve the results. The experimental results show that the proposed approaches have better performances than those of existing methods.

2004 ◽  
Vol 04 (02) ◽  
pp. 223-239 ◽  
Author(s):  
BISWAJIT SARKAR ◽  
LOKENDRA KUMAR SINGH ◽  
DEBRANJAN SARKAR

A polygonal approximation captures the essential features of a digital planar curve and yields a compact representation. Those points of the digital curve that carry vital information about the shape of the curve form the vertices of the approximating polygon and are called significant vertices. In this paper, we present a genetic algorithm-based approach to locate a specified number of significant points, such that the approximation error between the original curve and its polygonal version obtained by joining the adjacent significant points is minimized. By using a priori knowledge about the shape of the curve we confine our search to only those points of the curve that have the potential of qualifying as significant points. We also incorporate chromosome differentiation to improve upon the effectiveness of the search in arriving at a near-optimal polygonal approximation. Finally, we show that the proposed method performs remarkably well when evaluated in terms of the metrics available for assessing the goodness of a polygonal approximation algorithm.


2013 ◽  
Vol 13 (04) ◽  
pp. 1350017 ◽  
Author(s):  
KUMAR S. RAY ◽  
BIMAL KUMAR RAY

This paper applies reverse engineering on the Bresenham's line drawing algorithm [J. E. Bresenham, IBM System Journal, 4, 106–111 (1965)] for polygonal approximation of digital curve. The proposed method has a number of features, namely, it is sequential and runs in linear time, produces symmetric approximation from symmetric digital curve, is an automatic algorithm and the approximating polygon has the least non-zero approximation error as compared to other algorithms.


2021 ◽  
Author(s):  
Che-Hang Cliff Chan

The thesis presents a Genetic Algorithm with Adaptive Search Space (GAASS) proposed to improve both convergence performance and solution accuracy of traditional Genetic Algorithms(GAs). The propsed GAASS method has bee hybridized to a real-coded genetic algorithm to perform hysteresis parameters identification and hystereis invers compensation of an electromechanical-valve acuator installed on a pneumatic system. The experimental results have demonstrated the supreme performance of the proposed GAASS in the search of optimum solutions.


2011 ◽  
Vol 255-260 ◽  
pp. 2013-2017
Author(s):  
Fa Liang Huang

Genetic algorithms (GAs) have achieved lots of success in various applications, but the problem to balance exploration and exploitation of population is still up in the air. In this paper, we propose a variant of genetic algorithm with mating operator GASF to alleviate the problem; GASF measures the mating attractiveness of individuals from four aspects: gender, age, similarity and fitness. Individuals are assigned gender to facilitate mimicking human reproduction, and contributions of age, similarity and fitness to the attractiveness are respectively quantified and self-adaptively adjusted. Experimental results indicate that the proposed approach can achieve competitive performance with improved convergence.


2014 ◽  
Vol 998-999 ◽  
pp. 1169-1173
Author(s):  
Chang Lin He ◽  
Yu Fen Li ◽  
Lei Zhang

A improved genetic algorithm is proposed to QoS routing optimization. By improving coding schemes, fitness function designs, selection schemes, crossover schemes and variations, the proposed method can effectively reduce computational complexity and improve coding accuracy. Simulations are carried out to compare our algorithm with the traditional genetic algorithms. Experimental results show that our algorithm converges quickly and is reliable. Hence, our method vastly outperforms the traditional algorithms.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Xiangjuan Yao ◽  
Dunwei Gong

The application of genetic algorithms in automatically generating test data has aroused broad concerns and obtained delightful achievements in recent years. However, the efficiency of genetic algorithm-based test data generation for path testing needs to be further improved. In this paper, we establish a mathematical model of generating test data for multiple paths coverage. Then, a multipopulation genetic algorithm with individual sharing is presented to solve the established model. We not only analyzed the performance of the proposed method theoretically, but also applied it to various programs under test. The experimental results show that the proposed method can improve the efficiency of generating test data for many paths’ coverage significantly.


Author(s):  
Muhamad Radzi Rathomi ◽  
Reza Pulungan

Genetic algorithms are frequently used to solve optimization problems. However, the problems become increasingly complex and time consuming. One solution to speed up the genetic algorithm processing is to use parallelization. The proposed parallelization method is coarse-grained and employs two levels of parallelization: message passing with MPI and Single Instruction Multiple Threads with GPU. Experimental results show that the accuracy of the proposed approach is similar to the sequential genetic algorithm. Parallelization with coarse-grained method, however, can improve the processing and convergence speed of genetic algorithms.


2021 ◽  
Author(s):  
Che-Hang Cliff Chan

The thesis presents a Genetic Algorithm with Adaptive Search Space (GAASS) proposed to improve both convergence performance and solution accuracy of traditional Genetic Algorithms(GAs). The propsed GAASS method has bee hybridized to a real-coded genetic algorithm to perform hysteresis parameters identification and hystereis invers compensation of an electromechanical-valve acuator installed on a pneumatic system. The experimental results have demonstrated the supreme performance of the proposed GAASS in the search of optimum solutions.


2012 ◽  
Vol 17 (4) ◽  
pp. 241-244
Author(s):  
Cezary Draus ◽  
Grzegorz Nowak ◽  
Maciej Nowak ◽  
Marcin Tokarski

Abstract The possibility to obtain a desired color of the product and to ensure its repeatability in the production process is highly desired in many industries such as printing, automobile, dyeing, textile, cosmetics or plastics industry. So far, most companies have traditionally used the "manual" method, relying on intuition and experience of a colorist. However, the manual preparation of multiple samples and their correction can be very time consuming and expensive. The computer technology has allowed the development of software to support the process of matching colors. Nowadays, formulation of colors is done with appropriate equipment (colorimeters, spectrophotometers, computers) and dedicated software. Computer-aided formulation is much faster and cheaper than manual formulation, because fewer corrective iterations have to be carried out, to achieve the desired result. Moreover, the colors are analyzed with regard to the metamerism, and the best recipe can be chosen, according to the specific criteria (price, quantity, availability). Optimaization problem of color formulation can be solved in many diferent ways. Authors decided to apply genetic algorithms in this domain.


2018 ◽  
Author(s):  
Steen Lysgaard ◽  
Paul C. Jennings ◽  
Jens Strabo Hummelshøj ◽  
Thomas Bligaard ◽  
Tejs Vegge

A machine learning model is used as a surrogate fitness evaluator in a genetic algorithm (GA) optimization of the atomic distribution of Pt-Au nanoparticles. The machine learning accelerated genetic algorithm (MLaGA) yields a 50-fold reduction of required energy calculations compared to a traditional GA.


Sign in / Sign up

Export Citation Format

Share Document