A Dual Frequency RF-DC Rectifier Circuit with a Low Input Power for Radio Frequency Energy Harvesting

2019 ◽  
Vol 28 (03) ◽  
pp. 1950048 ◽  
Author(s):  
Mohamed Mokhlès Mnif ◽  
Hassene Mnif ◽  
Mourad Loulou

The energy-harvesting radio frequency (RF) can be an attractive alternative energy capable of replacing all or some of the board batteries. The RF waves are present in several high frequencies ([Formula: see text] GHz) and at low power (a few [Formula: see text]W). An energy-harvesting circuit designed must provide 1[Formula: see text]V voltage at minimum that is able to operate an actuator or a sensor. The RF-DC rectifier is the main component of an energy-harvesting circuit. This paper presents a new design RF-DC rectifier circuit using the MOSFET transistors, the capacitors and the inductors. Our proposed circuit is a combination of an Inductor–Capacitor–Inductor–Capacitor (LCLC) serie-parallel resonant tank (SPRT) and rectifier cascade using the Dynamic threshold Voltage Cancellation (DVC) and the technique of the Internal threshold Voltage Cancellation (IVC). Our proposed circuit operates in dual frequencies [Formula: see text][Formula: see text]GHz and [Formula: see text][Formula: see text]GHz with a low input power [Formula: see text][Formula: see text][Formula: see text]W ([Formula: see text][Formula: see text]dbm) and [Formula: see text][Formula: see text][Formula: see text]W ([Formula: see text][Formula: see text]dbm), respectively. This circuit gives a Power Conversion Efficiency (PCE) of 56.9% and an output voltage [Formula: see text][Formula: see text]V for the frequency 2.543[Formula: see text]GHz and a PCE of 62.6% and an output voltage [Formula: see text][Formula: see text]V for the frequency 4[Formula: see text]GHz. The pre-layout simulations were performed using the Advanced Design System (ADS) and the technology used is CMOS 0.18[Formula: see text][Formula: see text]m from TSMC. The simulations were performed on the proposed circuit composed by three stages.

Author(s):  
Aiman Saifullah Aini Azman ◽  
Nor Azuana Ramli

Energy harvesting has been a phenomena throughout the year as it produces renewable clean energy which not only benefit to the user but also to the environment. Radio frequency energy is among the possible choice that can be harvested for low power usage application. By doing so, low power application such as IoT based sensors can eliminate usage of input power from battery which has limited supply over time or restrained from limited cable length. The objectives of this study are to design a power over Wi-Fi rectifier circuit for IoT based sensor application, analyze the effect of different type of diodes to the power over Wi-Fi rectifier circuit, and determine of minimum voltage required to power an IoT sensor. Cockcroft Walton voltage multiplier configuration was chosen as the rectifier circuit to be employed in the simulation by using Multisim software. With two different Schottky diodes, the output were recorded, and analyzed. Both diode has achieved the minimum required voltage of 3.3V and above for IoT sensors at stage 3. Among the diodes, BAT68 has recorded better output with 4.145V compare to diode BAT17 with 4.090V. Output of diode BAT68 also has reach its stable condition fast than diode BAT17. This configuration can be used and applied in prototype for future study. Even though there are many other factors that need to be considered, radio frequency energy harvesting should be explored more as it promotes clean energy and longevity lifespan as the world are moving wireless in many tasks.


2020 ◽  
Vol 18 (03) ◽  
pp. 604-612
Author(s):  
Jonathan Martinez Moreno ◽  
Agustin Santiago Medina Vazquez ◽  
Carlos Alberto Bonilla Barragan ◽  
Jose Martin Villegas Gonzalez ◽  
Juan Carlos Aldaz Rosas

Author(s):  
I. Adam ◽  
M.N. M. Yasin ◽  
M.E. A. Aziz ◽  
Sulaiman M.I.

One of challenge in rectenna design is the impedance matching of the antenna to the rectifier load. Rectifier exhibits complex impedance while antennas are normally designed to match either 50 Ω or 75 Ω loads. For the optimum power transfer between antenna and the rectifier circuit, both impedances should be matched. This paper presents the design and development of the 7-stages Dickson multiplier in energy harvesting. The objective of this paper is to analyze the performance of the designed multiplier together with matching circuit. An improvement of 60% output voltage is achieved by feeding -30dBm of low input power at the multiplier circuit.


Author(s):  
E. T. Pereira ◽  
H. P. Paz ◽  
V. S. Silva ◽  
E. V. V. Cambero ◽  
I. R. S. Casella ◽  
...  

In this paper, a low-cost rectenna based on an antipodal Vivaldi antenna (AVA) with elliptical slots (AVA-ES) is developed and analyzed. The design of AVA-ES, when compared to a reference AVA, presents significant improvements in directivity and gain (58% at 2.45[Formula: see text]GHz for both), evidencing its advantages for using in rectennas. The proposed rectenna prototype presents satisfactory results at 2.45[Formula: see text]GHz, such as conversion efficiency for low-power input levels (27% at [Formula: see text]10[Formula: see text]dBm) and maximum output voltage (550[Formula: see text]mV), that supports its use for radio-frequency energy harvesting (RFEH).


2017 ◽  
Vol 26 (12) ◽  
pp. 1750196 ◽  
Author(s):  
Yanzhao Ma ◽  
Yinghui Zou ◽  
Shengbing Zhang ◽  
Xiaoya Fan

A fully-integrated self-startup circuit with ultra-low voltage for thermal energy harvesting is presented in this paper. The converter is composed of an enhanced swing LC oscillator and a charge pump with decreased equivalent input capacitance. The LC oscillator has ultra-low input voltage and high output voltage swing, and the charge pump has a fast charging speed and small equivalent input capacitance. This circuit is designed with 0.18[Formula: see text][Formula: see text]m standard CMOS process. The simulation results show that the output voltage is in the range of 0.14[Formula: see text]V and 2.97[Formula: see text]V when the input voltage is changed from 50[Formula: see text]mV to 150[Formula: see text]mV. The output voltage could reach 2.87[Formula: see text]V at the input voltage of 150[Formula: see text]mV and the load of 1[Formula: see text]M[Formula: see text]. The maximum efficiency is in the range of 10.0% and 14.8% when the input voltage is changed from 0.2[Formula: see text]V to 0.4[Formula: see text]V. The circuit is suitable for thermoelectric energy harvesting to start with ultra-low input voltage.


Sign in / Sign up

Export Citation Format

Share Document