All-Optical DFT Using TOAD-Based Cross-Bar Switches

2019 ◽  
Vol 28 (09) ◽  
pp. 1950156 ◽  
Author(s):  
Ashis Kumar Mandal

The discovery of ultra-high-speed all-optical switches in the very recent past based on semiconductor optical amplifier (SOA) especially in the interferometric configuration is very pronouncing due to their features like high repetition rate, low power consumption, fast switching time, noise and jitter tolerance, being easily integrable and operationally versatile, thereby bringing a revolution in all-optical information processing systems. In this work, an all-optical computing tool namely SOA-based [Formula: see text] terahertz optical asymmetric demultiplexer (TOAD) is used because it can be employed to design more complex circuits and subsystems of enhanced combinational and sequential functionality. In this paper, (a) a switching network with its two switching actions and (b) an all-optical [Formula: see text] cross-bar network architecture, i.e., a multistage cube network for [Formula: see text] using TOAD-based [Formula: see text] optical cross-bar switch for discrete Fourier transform (DFT), are proposed. Numerical simulation of this work is done with OptiSystem v7.0 to evaluate the performance of the proposed circuit.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Saumya Srivastava ◽  
Upendra Chaurasiya ◽  
Pradeep Tiwari ◽  
Ashish Misal ◽  
Kamal Kishor Upadhyay

Abstract The construction of an all-optical frequency-encoded Toffoli gate employing a reflecting semiconductor optical amplifier (RSOA) is proposed in this article. By establishing fields such as quantum computing, optical quantum computing, quantum-dot cellular automata, and superconducting flux logic family, quantum gates have been proved to perform reliably in the present day. A nonzero-mass electron, on the other hand, moves far slower than a quantum particle with zero rest mass, such as a photon. Photons can also be utilized to store data while being sent. These photon qualities have motivated researchers to create quantum gates in the all-optical domain based on them. The RSOA-based implementation of the Toffoli gate gives a significant improvement in the case of high speed, low power, and fast switching time. MATLAB Simulink (R2018a) software is used to simulate the devised design. The theoretical prediction is satisfied by the simulation results.


2017 ◽  
Vol 54 (3) ◽  
pp. 030606
Author(s):  
马 杰 Ma Jie ◽  
卢 嘉 Lu Jia ◽  
伍萍辉 Wu Pinghui ◽  
刘剑飞 Liu Jianfei ◽  
常海悦 Chang Haiyue ◽  
...  

2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


2009 ◽  
pp. 3519-3543
Author(s):  
Abid Abdelouahab ◽  
Fouad Mohammed Abbou ◽  
Ewe Hong Tat ◽  
Toufik Taibi

To exploit the unprecedented opportunities offered by the E-Service Applications, businesses and users alike would need a highly-available, reliable, and efficient telecommunication infrastructure. This chapter provides an insight into building the next-generation network infrastructure, that is, the All-Optical Internet. It also reveals the factors driving the convergence of the Internet Protocol (IP) and the Wavelength-Division Multiplexing (WDM) technology. The chapter discusses the dominant optical networks architectures in an attempt to show the evolution towards the ultimate all-optical packet-switching network. A special focus is given to the Optical Burst Switching (OBS) as a new emerging switching paradigm and a highly promising technology. OBS network architecture, burst assembly, signaling and reservation protocols, QoS support, and contention resolution techniques are presented. Furthermore, realistic suggestions and strategies to efficiently deploy OBS are given.


Author(s):  
Abid Abdelouahab ◽  
Fouad Mohammed Abbou ◽  
Ewe Hong Tat ◽  
Toufik Taibi

To exploit the unprecedented opportunities offered by the E-Service Applications, businesses and users alike would need a highly-available, reliable, and efficient telecommunication infrastructure. This chapter provides an insight into building the next-generation network infrastructure, that is, the All-Optical Internet. It also reveals the factors driving the convergence of the Internet Protocol (IP) and the Wavelength-Division Multiplexing (WDM) technology. The chapter discusses the dominant optical networks architectures in an attempt to show the evolution towards the ultimate all-optical packet-switching network. A special focus is given to the Optical Burst Switching (OBS) as a new emerging switching paradigm and a highly promising technology. OBS network architecture, burst assembly, signaling and reservation protocols, QoS support, and contention resolution techniques are presented. Furthermore, realistic suggestions and strategies to efficiently deploy OBS are given.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractAll optical logic gates are the key elements of contemporary optical computing unit. For that non-linear attribute of reflective semiconductor optical amplifier (RSOA) is exploited to configure optical logic gates. Accordingly, in the manuscript all optical OR/NOR/Buffer binary logic network for the nonreturn to zero format has been designed. Its operation at 100 Gbps data rate has been successfully realized. For the applied data inputs in nonreturn to zero patterns, their corresponding output waveforms for the stated logic action have been verified. Numerical investigations for the imperative design constraints as data rate, injected power and imperative elements of the semiconductor optical amplifiers (SOAs) pump current, carrier density, active length, confine factor, laser power has been appropriately executed with optimum performance. It has depicted good extinction ratio (>10 dB) performance with confine factor more than 0.2 and higher carrier density of amplifier. Further, it also accomplished, that for the OR, buffer logic execution with lower power of pump laser and for the NOR logic execution higher power laser pump source is required. The proposed design could fulfill need for the impending higher data rate composite optical computing units.


Sign in / Sign up

Export Citation Format

Share Document