scholarly journals Enhanced All-Optical Y-Shaped Plasmonic OR, NOR And NAND Gate Models, Analyses, And Simulation For High Speed Computations

Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction of an all-optical OR, NOR, NAND gates based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB for NAND gate, 2 dB and 20.35 dB for NOR gate and 6 dB and 24.10 dB respectively. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.

2021 ◽  
Author(s):  
Ipshitha Charles ◽  
Alluru Sreev ◽  
SabbiVamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract In this digital era, all-optical logic gates (OLGs) proved its effectiveness in execution of high-speed computations. A unique construction for all optical NAND gate based on the notion of power combiner employing metal–insulator–metal (MIM) waveguide in the Y-shape in a minimal imprint of 6.2 µm × 3 µm is presented and the structure is evaluated by finite-difference time-domain (FDTD) technique. The insertion loss (IL) and extinction-ratio (ER) for proposed model are 6 dB and 27.76 dB. The simplified model is used in the construction of complex circuits to achieve greater efficiency, which contributes to the emergence of a new technique for designing plasmonic integrated circuits.


2021 ◽  
Author(s):  
Sandip Swarnakar ◽  
Siva Koti Reddy ◽  
Ramanand Harijan ◽  
Santosh Kumar

Abstract All the basic logic gates play a major role in carrying out the mathematical computation. The drawbacks of conventional electronics are alleviated by all-optical integrated circuits with a great application of high-speed computing and information processing. In this paper, plasmonic metal-insulator-metal (MIM) waveguides have an excellent property of propagating the surface plasmons beyond the diffraction limit up to deep sub-wavelength scale. All-optical NAND gate design is optimized by using MIM plasmonic waveguide-based Mach-Zehnder Interferometers (MZIs) in the footprint of 36 µm × 8 µm that works at 1.55 µm operating wavelength. The better performance of the proposed device is achieved, such as the extinction ratio is 10.55 dB, insertion loss is obtained as 0.506 dB, and response time is 262 ps. The proposed design is verified by using the finite-difference time-domain (FDTD) technique and further analysis are carried out by mathematical computation and MATLAB simulation results.


2021 ◽  
Author(s):  
Surya Pavan Kumar Anguluri ◽  
Srinivas Raja Banda ◽  
Sabbi Vamshi Krishna ◽  
Sandip Swarnakar ◽  
Santosh Kumar

Abstract All-optical logic gates have proven their significance in the digital world using which all high-speed computations are calculated. In this paper, we have proposed a novel structure for all-optical AND using the concept of power combiner using Y-shaped metal-insulator-metal waveguide under the footprints of A. This design works under the principle of linear interference. The insertion loss and extinction ratio of the design are given by 0.165 dB and 14.11 dB, respectively. The analysis of the design is carried out by finite-difference-time-domain (FDTD) method and verified using MATLAB. This minimized structure can be used to design any complex logic circuits to achieve better performance in future.


2018 ◽  
Vol 32 (02) ◽  
pp. 1850008 ◽  
Author(s):  
Luna Cui ◽  
Li Yu

Nano-scale Multifunctional Logic Gates based on Si hybrid plasmonic waveguides (HPWGs) are designed by utilizing the multimode interference (MMI) effect. The proposed device is composed of three input waveguides, three output waveguides and an MMI waveguide. The functional size of the device is only 1000 nm × 3200 nm, which is much smaller than traditional Si-based all-optical logic gates. By setting different input signals and selecting suitable threshold value, OR, AND, XOR and NOT gates are achieved simultaneously or individually in a single device. This may provide a way for ultrahigh speed signal processing and future nanophotonic integrated circuits.


2015 ◽  
Vol 24 (03n04) ◽  
pp. 1550005 ◽  
Author(s):  
Wenbo Li ◽  
Hongyu Hu ◽  
Xiang Zhang ◽  
Niloy K. Dutta

A scheme to realize all-optical Boolean logic functions, XOR, AND and NAND operations using binary phase shift keyed (BPSK) signal based on quantum-dot semiconductor optical amplifiers (QD-SOA) has been designed and studied. Nonlinear dynamics including carrier heating and spectral hole-burning are taken into account together with the rate equations. We demonstrate XOR, AND and NAND operations at 250Gb/s using a pair of QD-SOA Mach-Zehnder interferometers. Results show that this scheme is suitable for high speed all-optical Boolean logic operations and can improve the output quality comparing with the system using on-off-keyed (OOK) signal.


2009 ◽  
Vol 74 ◽  
pp. 39-43 ◽  
Author(s):  
Jian Wu ◽  
Min Xue Wang ◽  
Bing Bing Wu

In this paper, we report our recent studies on developing nonlinear techniques based on a single SOA for all-optical signal processing at high-speed, with a focus on simple configurations employing commercial SOAs for several key all-optical network applications. Our researches are based on nonlinear polarization rotation (NPR), four-wave mixing (FWM) and cross-phase modulation (XPM) effects in a single SOA. We propose and demonstrate applications of the nonlinear techniques in all-optical logic gates, multi-function format coversion, tunable Lyot birefringent filter and multi-channel optical time division multiplexed (OTDM) demultiplexing.


Author(s):  
Shuai Zhao ◽  
Hongyu Hu

The scheme to realize high speed (~250Gb/s) all-optical Boolean logic gates using semiconductor optica amplifiers with quantum-dot (QD-SOA) is introduced and analyzed in this review. Numerical simulation method was presented by solving the rate equation and taking into account nonlinear dynamics including carrier heating and spectral hole-burning. Binary phase shift keyed (BPSK) signal and on-off keyed signal are used to generate high speed all-optical logic gates. The applications based on all-optical logic gates such as, all-optical latches, pseudo random bit sequence (PRBS) generation and all-optical encryption, are also discussed in this review. Results show that the scheme based on QD-SOA is a promising method for the realization of high speed all-optical communication system in the future.


2019 ◽  
Vol 40 (1) ◽  
pp. 7-16 ◽  
Author(s):  
G. S. B Filho ◽  
F. L. B Martins ◽  
M. F Junior ◽  
A. A. R Araújo ◽  
J. C Nascimento ◽  
...  

Abstract In this paper, we numerically investigate the behavior of solitons in a Mach–Zehnder interferometer made of dual-core photonic crystal fibers. The goal was to obtain logic gates with modulated information in ON-OFF keying (OOK). We considered ultra-short solitonic pulses propagating throughout the system in two distinct regimes of pump power and obtained the OR and XOR gates with fundamental solitons. In addition, the A→B and A←B Boolean expressions were obtained with high peak power. As these logical expressions were obtained with the same length of the obtained logic gates, they are important and therefore can be used to save space in the design of complex circuits.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Devendra Kr. Tripathi

AbstractAll optical logic gates are the key elements of contemporary optical computing unit. For that non-linear attribute of reflective semiconductor optical amplifier (RSOA) is exploited to configure optical logic gates. Accordingly, in the manuscript all optical OR/NOR/Buffer binary logic network for the nonreturn to zero format has been designed. Its operation at 100 Gbps data rate has been successfully realized. For the applied data inputs in nonreturn to zero patterns, their corresponding output waveforms for the stated logic action have been verified. Numerical investigations for the imperative design constraints as data rate, injected power and imperative elements of the semiconductor optical amplifiers (SOAs) pump current, carrier density, active length, confine factor, laser power has been appropriately executed with optimum performance. It has depicted good extinction ratio (>10 dB) performance with confine factor more than 0.2 and higher carrier density of amplifier. Further, it also accomplished, that for the OR, buffer logic execution with lower power of pump laser and for the NOR logic execution higher power laser pump source is required. The proposed design could fulfill need for the impending higher data rate composite optical computing units.


Sign in / Sign up

Export Citation Format

Share Document