Reactive Power Loss Reduction in Distribution Network Using Crow Search Optimization and Available Transfer Capability

2020 ◽  
Vol 29 (15) ◽  
pp. 2050237
Author(s):  
N. Kannan ◽  
S. Sutha

In distribution systems, it is important to guarantee the protected operating state of the power system by the transmission suppliers. To transmit a secure, dependable and economical supply of electric power, long separation bulk power transmission is fundamental. Despite that, the power transfer capacity of the power system is constrained because of the elements like thermal limits, voltage limits and security limits. Crow Search Optimizations (CSO) have been exhibited to be reasonable methodologies in taking care of nonlinear power system issues with Available Transfer Capability (ATC). It is conceivable to improve transmission capabilities. This proposed method based on the IEEE 30-bus system is considered with two distinct areas, and furthermore, the input source is a typical load system with a distributed network. There is a need to control the reactive power flow at the Point of Common Coupling (PCC) between the grids of various voltage levels. To operate a power system securely and furthermore to acquire the benefit of bulk power transfer, ATC evaluation is required. The load gets raised from 50% to 100% in the distribution side by including the thermal power plant (85% and 95% load is included) and with the procured condition, ATC and losses are to be determined. This ATC is determined for verified power supply to the consumers.

2018 ◽  
Vol 7 (1.8) ◽  
pp. 188
Author(s):  
M Dhana Sai Sri ◽  
P Srinivasa Varma

Reliability of network is need of the hour in the present power system market and is constrained by capability of the network. The network calculations are performed using accurate and high efficient strategies. In order to perform power transactions in the system, the computation of available transfer capability is essential which a metric of capability of the system. Generally, effect wattless power is not taken into account in the methodologies for computation of linear available transfer capability. In this paper, a methodology which considers the reactive power flows for enhancement of linear ATC is presented. In order to perform analysis theoretically, a standard IEEE 3 bus system is considered. Another case study i.e., 14 bus system available in IEEE test systems is used for simulation analysis. FACTS technology is incorporated in the existing system in order to enhance capability of the network. To facilitate transfer maximum power in the system, an optimal power-flow-based ATC enhancement model is formulated and presented along with simulation results. Studies based on the IEEE 3-bus system and 14-bus systems with TCSC demonstrate the effectiveness of FACTS control on ATC enhancement.  


Author(s):  
Prakash Kerur ◽  
R. L. Chakrasali

The major challenges in deregulated system are determination of available transfer capability on the interconnected transmission lines. Electricity industry deregulation is the required for creating a competitive market throughout the world, which instigate new technical issues to market participants and Power System Operators (PSO). Power transfer capability is a crucial parameter to decide the power flow in the lines for further transactions and the estimation of Transfer Capability decides the power transactions based on the safety and ability of the system. This parameter will decide if an interconnected network could be reliable for the transfer of bulk power between two different areas of the network without causing risk to system consistency. The Power Transfer Distribution Factor (PTDF) is the sensitivity index, which decides the transfer capability in the interconnected network under deregulated power systems. This experiment is conducted on IEEE-6 bus system using Power World Simulator to determine the transfer capability in deregulated system under line outage condition.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3390
Author(s):  
Ruipeng Guo ◽  
Lilan Dong ◽  
Hao Wu ◽  
Fangdi Hou ◽  
Chen Fang

Even with modern smart metering systems, erroneous measurements of the real and reactive power in the power system are unavoidable. Multiple erroneous parameters and measurements may occur simultaneously in the state estimation of a bulk power system. This paper proposes a gross error reduction index (GERI)-based method as an additional module for existing state estimators in order to identify multiple erroneous parameters and measurements simultaneously. The measurements are acquired from a supervisory control and data acquisition system and mainly include voltage amplitudes, branch current amplitudes, active power flow, and reactive power flow. This method uses a structure consisting of nested two loops. First, gross errors and the GERI indexes are calculated in the inner loop. Second, the GERI indexes are compared and the maximum GERI in each inner loop is associated with the most suspicious parameter or measurement. Third, when the maximum GERI is less than a given threshold in the outer loop, its corresponding erroneous parameter or measurement is identified. Multiple measurement scans are also adopted in order to increase the redundancy of measurements and the observability of parameters. It should be noted that the proposed algorithm can be directly integrated into the Weighted Least Square estimator. Furthermore, using a faster simplified calculation technique with Givens rotations reduces the required computer memory and increases the computation speed. This method has been demonstrated in the IEEE 14-bus test system and several matpower cases. Due to its outstanding practical performance, it is now used at six provincial power control centers in the Eastern Grid of China.


2013 ◽  
Vol 724-725 ◽  
pp. 582-586
Author(s):  
Zhong Cheng Li ◽  
Bu Han Zhang ◽  
Ye Bin Ge ◽  
Yi Chen ◽  
Xiao Gang Miao ◽  
...  

The paper mainly studies the available transfer capability of wind farm incorporated power system, and proposes an on-line calculating method considering many uncertain factors. First based on continuation power flow, an improved algorithm of the key constraint by linear prediction is proposed so as to obtain deterministic ATC with the expansion power flow equation. Then Monte Carlo simulation is used which takes many uncertain factors into considerations, such as wind speed, the random fault of generators and lines, the fluctuation of generators and load, etc. With hierarchical clustering algorithm, the samples with the same key constraint can be divided into one category without repeatedly predicting key constraint, so the probabilistic ATC in all kinds of conditions can be got rapidly and precisely. Finally a case study demonstrates the validity and superiority of method proposed in this paper. The research could be a valuable reference to power market operations and wind farm planning.


Author(s):  
Ananda M. H. ◽  
M. R. Shivakumar

One of the best flexible AC transmission system (FACTS) is unified power flow controller (UPFC). As it gets more benefit from both real and reactive power transfer, it is used in power system for controlling the transmitted power. The UPFC controls the power on the transmission side of the power system. When the real as well as reactive power is set the UPFC tries to follow the command by using the proportional and integral (PI) controller. But in some power systems the PI controllers cannot produce the proper power due to the power oscillations. These oscillations are created due to PI controller properties. In this paper the PI controller is replaced with the particle swarm optimization tuned PI controller (PSO-PI). It minimizes the power oscillations by using the objective function. The MATLAB 2017b is used to demonstrate the power transfer curves and the voltages. The IEEE 9 bus system is being used as a reference system.


2014 ◽  
Vol 986-987 ◽  
pp. 377-382 ◽  
Author(s):  
Hui Min Gao ◽  
Jian Min Zhang ◽  
Chen Xi Wu

Heuristic methods by first order sensitivity analysis are often used to determine location of capacitors of distribution power system. The selected nodes by first order sensitivity analysis often have virtual high by first order sensitivities, which could not obtain the optimal results. This paper presents an effective method to optimally determine the location and capacities of capacitors of distribution systems, based on an innovative approach by the second order sensitivity analysis and hierarchical clustering. The approach determines the location by the second order sensitivity analysis. Comparing with the traditional method, the new method considers the nonlinear factor of power flow equation and the impact of the latter selected compensation nodes on the previously selected compensation location. This method is tested on a 28-bus distribution system. Digital simulation results show that the reactive power optimization plan with the proposed method is more economic while maintaining the same level of effectiveness.


Sign in / Sign up

Export Citation Format

Share Document