POLYTOPIC OBSERVER FOR GLOBAL SYNCHRONIZATION OF SYSTEMS WITH OUTPUT MEASURABLE NONLINEARITIES

2003 ◽  
Vol 13 (03) ◽  
pp. 703-712 ◽  
Author(s):  
GILLES MILLERIOUX ◽  
JAMAL DAAFOUZ

Chaos synchronization has been tackled by considering the problem as a special case of an observer design. The considered dynamical systems to be synchronized have measurable nonlinearities. Their dynamical matrix is described in a polytopic way. By using the notion of polyquadratic stability, the problem of the observer synthesis is turned into the resolution of a set of Linear Matrix Inequalities (LMI) which are less conservative compared to the case of an usual quadratic Lyapunov approach. This enables to enlarge the class of systems for which synchronization can take place. The resulting matrix gain of the observer is computed by interpolating vertices gains resulting from the solution of the LMI's.

2018 ◽  
Vol 66 (3) ◽  
pp. 225-233 ◽  
Author(s):  
A.-J. Pérez-Estrada ◽  
G.-L. Osorio-Gordillo ◽  
M. Darouach ◽  
V.-H. Olivares-Peregrino

Abstract This paper presents a new generalized dynamic observer (GDO) for quasi-linear parameter varying (LPV) systems. It generalises the structures of the proportional observer (PO) and proportional integral observer (PIO). The design of the GDO is derived from the solution of linear matrix inequalities (LMIs) and the solution of the algebraic constraints obtained from the estimation error analysis. The efficiency of the proposed approach is illustrated by a numerical example.


Author(s):  
Li Yang ◽  
Xinzhi Liu ◽  
Zhigang Zhang

This paper studies the problem of exponentially dissipative control for singular impulsive dynamical systems. Some necessary and sufficient conditions for exponential dissipativity of such systems are established in terms of linear matrix inequalities (LMIs). A state feedback controller is designed to make the closed-loop system exponentially dissipative. A numerical example is given to illustrate the feasibility of the method.


2014 ◽  
Vol 950 ◽  
pp. 119-124
Author(s):  
Tian Shao ◽  
Ke Peng ◽  
Zhi Sheng Chen ◽  
Yan Jun Liu

This paper addresses the observer design for simultaneously estimating the state and input of a class of impulsive systems whose nonlinear terms satisfy an incremental quadratic constraint. By employing Lyapunov theory, sufficient conditions for asymptotical and exponential estimation convergence are derived. Gain matrices of the proposed observer can be obtained by solving linear matrix inequalities (LMIs).


Author(s):  
Zheng Shen ◽  
Christopher D. Rahn

State-of-charge (SOC) estimation for valve-regulated lead-acid (VRLA) batteries is complicated by the switched linear nature of the underlying dynamics. A first principles nonlinear model is simplified to provide two switched linear models and linearized to produce charge, discharge, and averaged models. Luenberger and switched SOC estimators are developed based on these models and propagated using experimental data. A design methodology based on linear matrix inequalities (LMIs) is used in the switched SOC estimator design to obtain a switched Luenberger observer with guaranteed exponential stability. The results show that estimation errors are halved by including switching in the observer design.


2018 ◽  
Vol 10 (10) ◽  
pp. 4-19
Author(s):  
Magomed G. GADZHIYEV ◽  
◽  
Misrikhan Sh. MISRIKHANOV ◽  
Vladimir N. RYABCHENKO ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document