Observer Design for Robotic Systems via Takagi–Sugeno Models and Linear Matrix Inequalities

Author(s):  
Víctor Estrada-Manzo ◽  
Zsófia Lendek ◽  
Thierry-Marie Guerra
2021 ◽  
Vol 297 ◽  
pp. 01035
Author(s):  
Rachid Naoual ◽  
Abderrahim El-Amrani ◽  
Ismail Boumhidi

This paper deals with the problem of H∞ model reduction for two-dimensional (2D) discrete Takagi-Sugeno (T-S) fuzzy systems described by Fornasini-Marchesini local state-space (FM LSS) models, over finite frequency (FF) domain. New design conditions guaranteeing the FF H∞ model reduction are established in terms of Linear Matrix Inequalities (LMIs). To highlight the effectiveness of the proposed H∞ model reduction design, a numerical example is given.


2000 ◽  
Author(s):  
Kiriakos Kiriakidis

Abstract Unconventional nonlinear models such as nonlinear ARMAX, Takagi-Sugeno fuzzy models, global linearizations, and linear hybrid systems are, at the highest level of abstraction, a sort of quasi-linear models, namely, Polytopic Linear Differential Inclusions (PLDIs). At present, quadratic stability has enabled, mainly via linear matrix inequalities, the analysis and design of a nonlinear system from the vertex matrices of its PLDI model. Proving stability by a globally quadratic Lyapunov function, however, entails conservatism. This paper proposes a less conservative framework by using piecewise-quadratic generalized Lyapunov functions. Further manipulation of the problem within such framework yields a set of bilinear rather than linear matrix inequalities.


2003 ◽  
Vol 13 (03) ◽  
pp. 703-712 ◽  
Author(s):  
GILLES MILLERIOUX ◽  
JAMAL DAAFOUZ

Chaos synchronization has been tackled by considering the problem as a special case of an observer design. The considered dynamical systems to be synchronized have measurable nonlinearities. Their dynamical matrix is described in a polytopic way. By using the notion of polyquadratic stability, the problem of the observer synthesis is turned into the resolution of a set of Linear Matrix Inequalities (LMI) which are less conservative compared to the case of an usual quadratic Lyapunov approach. This enables to enlarge the class of systems for which synchronization can take place. The resulting matrix gain of the observer is computed by interpolating vertices gains resulting from the solution of the LMI's.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhile Xia

This paper studies the stabilization design scheme with H∞ performance for a large class of nonlinear discrete-time systems. The system under study is modeled by Takagi-Sugeno (T-S) model with local nonlinearity and state delay. First, the model is changed into an equivalent fuzzy switching model. And then, according to projection theorem and piecewise Lyapunov function (PLF), two new H∞ control methods are proposed for fuzzy switched systems, which consider the time delay information of the system. Finally, the relationship among all fuzzy subsystems is considered. Because the results are only expressed by a series of linear matrix inequalities (LMIs), the controller can be directly designed by the linear matrix inequalities toolbox of MATLAB.


2018 ◽  
Vol 66 (3) ◽  
pp. 225-233 ◽  
Author(s):  
A.-J. Pérez-Estrada ◽  
G.-L. Osorio-Gordillo ◽  
M. Darouach ◽  
V.-H. Olivares-Peregrino

Abstract This paper presents a new generalized dynamic observer (GDO) for quasi-linear parameter varying (LPV) systems. It generalises the structures of the proportional observer (PO) and proportional integral observer (PIO). The design of the GDO is derived from the solution of linear matrix inequalities (LMIs) and the solution of the algebraic constraints obtained from the estimation error analysis. The efficiency of the proposed approach is illustrated by a numerical example.


Sign in / Sign up

Export Citation Format

Share Document