STOCHASTIC DRIVING AND COUPLING CONTROL METHOD TO SUPPRESS SPIRAL WAVES AND SPATIOTEMPORAL CHAOS AND ANALYSIS OF CORRELATION

2009 ◽  
Vol 19 (03) ◽  
pp. 1081-1086 ◽  
Author(s):  
TIAN HUANHUAN ◽  
XUE YU ◽  
LIANG YUJUAN ◽  
KANG SANJUN

In this paper, the stochastic driving and coupling method to effectively suppress the turbulence and spiral waves is proposed. It is confirmed that the drive system ensures the response achieves complete synchronization via the computation of the Pearson's coefficient γ. The minimum time units of achieving complete synchronization N versus the coupling proportion P takes on the power-law N ~ P-k.

2008 ◽  
Vol 22 (24) ◽  
pp. 4153-4161 ◽  
Author(s):  
YU QIAN ◽  
YU XUE ◽  
GUANG-ZHI CHEN

A unidirectional coupling method to successfully suppress spiral waves in excitable media is proposed. It is shown that this control method has high control efficiency and is robust. It adapts to control of spiral waves for catalytic CO oxidation on platinum as well as for the FHN model. The power law n ~ c-k of control time steps n versus the coupling strength c for different models has been obtained.


2013 ◽  
Vol 27 (23) ◽  
pp. 1350129 ◽  
Author(s):  
RUI ZHAO ◽  
WEI PAN ◽  
YU XUE

In this paper, we propose the stochastic and unidirectional cross-coupled control method between two-layer excitable media to suppress the spiral waves and spatiotemporal chaos. Four types of the drive-response system in such two-layer excitable media are studied. By performing many simulations, results illustrate the spiral waves and spatiotemporal chaos can be controlled to the desired target states like the target waves and traveling waves. Patterns obtained are obviously different from those of the one-to-one coupling model. Based on the method proposed by Henry, we have carefully studied the generalized synchronization between the drive and response system with the stochastic and cross-connecting points via amplitude analysis and computing Poisson coefficient. Moreover, there also exists the frequency locking phenomenon.


1999 ◽  
Vol 09 (05) ◽  
pp. 929-937 ◽  
Author(s):  
MARK A. PUSTOVOIT ◽  
VALERY I. SBITNEV

Intermittency of checkerboard spiral waves and traveling clusterings originating from sudden shrinking of the strange attractor of the 2D CML in the neighborhood of the saddle-node bifurcation boundary is found. A power-law probability density for lifetimes in the spiral wave (laminar) phase is observed, while in the checkerboard clusterings (bursting) phase the above quantity exhibits an exponential decay. This difference can be interpreted through the self-organized behavior of the spiral waves, and the passive relaxation of the disordered checkerboard clusterings.


2019 ◽  
Vol 9 (2) ◽  
pp. 276 ◽  
Author(s):  
Yugong Luo ◽  
Yun Hu ◽  
Fachao Jiang ◽  
Rui Chen ◽  
Yongsheng Wang

To solve the problems with the existing active fault-tolerant control system, which does not consider the cooperative control of the drive system and steering system or accurately relies on the vehicle model when one or more motors fail, a multi-input and multi-output model-free adaptive active fault-tolerant control method for four-wheel independently driven electric vehicles is proposed. The method, which only uses the input/output data of the vehicle in the control system design, is based on a new dynamic linearization technique with a pseudo-partial derivative, aimed at solving the complex and nonlinear issues of the vehicle model. The desired control objectives can be achieved by the coordinated adaptive fault-tolerant control of the drive and steering systems under different failure conditions of the drive system. The error convergence and input-output boundedness of the control system are proven by means of stability analysis. Finally, simulations and further experiments are carried out to validate the effectiveness and real-time response of the fault-tolerant system in different driving scenarios. The results demonstrate that our proposed approach can maintain the longitudinal speed error (within 3%) and lateral stability, thereby improving the safety of the vehicles.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Guohai Liu ◽  
Jun Yuan ◽  
Wenxiang Zhao ◽  
Yaojie Mi

Multimotor drive system is widely applied in industrial control system. Considering the characteristics of multi-input multioutput, nonlinear, strong-coupling, and time-varying delay in two-motor drive systems, this paper proposes a new Smith internal model (SIM) control method, which is based on neural network generalized inverse (NNGI). This control strategy adopts the NNGI system to settle the decoupling issue and utilizes the SIM control structure to solve the delay problem. The NNGI method can decouple the original system into several composite pseudolinear subsystems and also complete the pole-zero allocation of subsystems. Furthermore, based on the precise model of pseudolinear system, the proposed SIM control structure is used to compensate the network delay and enhance the interference resisting the ability of the whole system. Both simulation and experimental results are given, verifying that the proposed control strategy can effectively solve the decoupling problem and exhibits the strong robustness to load impact disturbance at various operations.


2012 ◽  
Vol 61 (10) ◽  
pp. 100504
Author(s):  
Kuang Yu-Lan ◽  
Tang Guo-Ning

Sign in / Sign up

Export Citation Format

Share Document