STABILITY AND BIFURCATION IN A LOGISTIC EQUATION WITH PIECEWISE CONSTANT ARGUMENTS

2009 ◽  
Vol 19 (04) ◽  
pp. 1373-1379 ◽  
Author(s):  
CHUNRUI ZHANG ◽  
BAODONG ZHENG ◽  
YAZHUO ZHANG

A logistic equation with piecewise constant arguments is investigated. Firstly, the linear stability of the model is studied. It is found that there exists a Hopf bifurcation when the parameter passes a critical value. Then the explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solution is derived by using the normal form method and center manifold theorem. Finally, computer simulations are performed to illustrate the analytical results found.

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Xuebing Zhang ◽  
Honglan Zhu

In this paper, a finance system with delay is considered. By analyzing the corresponding characteristic equations, the local stability of equilibrium is established. The existence of Hopf bifurcations at the equilibrium is also discussed. Furthermore, formulas for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theorem. Finally, numerical simulation results are presented to validate the theoretical analysis. Numerical simulation results show that delay can lead a stable system into a chaotic state.


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Shuang Guo ◽  
Weihua Jiang

A class of three-dimensional Gause-type predator-prey model with delay is considered. Firstly, a group of sufficient conditions for the existence of Hopf bifurcation is obtained via employing the polynomial theorem by analyzing the distribution of the roots of the associated characteristic equation. Secondly, the direction of the Hopf bifurcation and the stability of the bifurcated periodic solutions are determined by applying the normal form method and the center manifold theorem. Finally, some numerical simulations are carried out to illustrate the obtained results.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a system of two semiconductor lasers, which are delay coupled via a passive relay within the synchronization manifold, are investigated. Depending on the coupling parameters, the system exhibits synchronized Hopf bifurcation and the stability switches as the delay varies. Employing the center manifold theorem and normal form method, an algorithm is derived for determining the Hopf bifurcation properties. Some numerical simulations are carried out to illustrate the analysis results.


2011 ◽  
Vol 2011 ◽  
pp. 1-25 ◽  
Author(s):  
N. Bairagi

A SI-type ecoepidemiological model that incorporates reproduction delay of predator is studied. Considering delay as parameter, we investigate the effect of delay on the stability of the coexisting equilibrium. It is observed that there is stability switches, and Hopf bifurcation occurs when the delay crosses some critical value. By applying the normal form theory and the center manifold theorem, the explicit formulae which determine the stability and direction of the bifurcating periodic solutions are determined. Computer simulations have been carried out to illustrate different analytical findings. Results indicate that the Hopf bifurcation is supercritical and the bifurcating periodic solution is stable for the considered parameter values. It is also observed that the quantitative level of abundance of system populations depends crucially on the delay parameter if the reproduction period of predator exceeds the critical value.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Chunming Zhang ◽  
Wanping Liu ◽  
Jing Xiao ◽  
Yun Zhao

A model applicable to describe the propagation of computer virus is developed and studied, along with the latent time incorporated. We regard time delay as a bifurcating parameter to study the dynamical behaviors including local asymptotical stability and local Hopf bifurcation. By analyzing the associated characteristic equation, Hopf bifurcation occurs when the time delay passes through a sequence of critical values. A formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions is given by using the normal form method and center manifold theorem. Finally, illustrative examples are given to support the theoretical results.


2017 ◽  
Vol 10 (05) ◽  
pp. 1750061
Author(s):  
Yong Yao ◽  
Zuxiong Li ◽  
Huili Xiang ◽  
Hailing Wang ◽  
Zhijun Liu

In this paper, regarding the time delay as a bifurcation parameter, the stability and Hopf bifurcation of the model of competition between two species in a turbidostat with Beddington–DeAngelis functional response and discrete delay are studied. The Hopf bifurcations can be shown when the delay crosses the critical value. Furthermore, based on the normal form and the center manifold theorem, the type, stability and other properties of the bifurcating periodic solutions are determined. Finally, some numerical simulations are given to illustrate the results.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Juan Liu

This paper is concerned with a prey-predator system with disease in the prey and two delays. Local stability of the positive equilibrium of the system and existence of local Hopf bifurcation are investigated by choosing different combinations of the two delays as bifurcation parameters. For further investigation, the direction and the stability of the Hopf bifurcation are determined by using the normal form method and center manifold theorem. Finally, some numerical simulations are given to support the theoretical analysis.


Author(s):  
Zizhen Zhang ◽  
Huizhong Yang

In this paper, we analyze the dynamics of a delayed food chain system with harvesting. Sufficient conditions for the local stability of the positive equilibrium and for the existence of Hopf bifurcation are obtained by analyzing the associated characteristic equation. Formulas for determining the direction of Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theorem. Finally, numerical simulation results are presented to validate the theoretical analysis.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Gang Zhu ◽  
Junjie Wei

The dynamics of a coupled optoelectronic feedback loops are investigated. Depending on the coupling parameters and the feedback strength, the system exhibits synchronized asymptotically stable equilibrium and Hopf bifurcation. Employing the center manifold theorem and normal form method introduced by Hassard et al. (1981), we give an algorithm for determining the Hopf bifurcation properties.


2017 ◽  
Vol 2017 ◽  
pp. 1-14
Author(s):  
Hongwei Luo ◽  
Jiangang Zhang ◽  
Wenju Du ◽  
Jiarong Lu ◽  
Xinlei An

A PI hydroturbine governing system with saturation and double delays is generated in small perturbation. The nonlinear dynamic behavior of the system is investigated. More precisely, at first, we analyze the stability and Hopf bifurcation of the PI hydroturbine governing system with double delays under the four different cases. Corresponding stability theorem and Hopf bifurcation theorem of the system are obtained at equilibrium points. And then the stability of periodic solution and the direction of the Hopf bifurcation are illustrated by using the normal form method and center manifold theorem. We find out that the stability and direction of the Hopf bifurcation are determined by three parameters. The results have great realistic significance to guarantee the power system frequency stability and improve the stability of the hydropower system. At last, some numerical examples are given to verify the correctness of the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document