scholarly journals SYNCHRONIZATION OF CHAOTIC FRACTIONAL-ORDER SYSTEMS VIA LINEAR CONTROL

2010 ◽  
Vol 20 (01) ◽  
pp. 81-97 ◽  
Author(s):  
ZAID M. ODIBAT ◽  
NATHALIE CORSON ◽  
M. A. AZIZ-ALAOUI ◽  
CYRILLE BERTELLE

The chaotic dynamics of fractional-order systems has attracted much attention recently. Chaotic synchronization of fractional-order systems is further studied in this paper. We investigate the chaos synchronization of two identical systems via a suitable linear controller applied to the response system. Based on the stability results of linear fractional-order systems, sufficient conditions for chaos synchronization of these systems are given. Control laws are derived analytically to achieve synchronization of the chaotic fractional-order Chen, Rössler and modified Chua systems. Numerical simulations are provided to verify the theoretical analysis.

2011 ◽  
Vol 25 (03) ◽  
pp. 407-415 ◽  
Author(s):  
XIANG RONG CHEN ◽  
CHONG XIN LIU

Based on the stability theory of fractional order systems, an effective but theoretically rigorous nonlinear control method is proposed to synchronize the fractional order chaotic systems. Using this method, chaos synchronization between two identical fractional order unified systems is studied. Simulation results are shown to illustrate the effectiveness of this method.


2017 ◽  
Vol 24 (16) ◽  
pp. 3676-3683 ◽  
Author(s):  
Esmat Sadat Alaviyan Shahri ◽  
Alireza Alfi ◽  
JA Tenreiro Machado

This paper studies the stability and the stabilization for a class of uncertain fractional order (FO) systems subject to input saturation. The Lipschitz condition and the Gronwall–Bellman lemma are adopted and sufficient conditions are derived to stabilize systems by designing a state feedback controller. Numerical examples demonstrate the effectiveness of the proposed method.


Author(s):  
Sara Dadras ◽  
Soodeh Dadras ◽  
Hadi Malek ◽  
YangQuan Chen

In this paper, stability of fractional order (FO) systems is investigated in the sense of the Lyapunov stability theory. A new definition for exponential stability of the fractional order systems is given and sufficient conditions are obtained for the exponential stability of the FO systems using the notion of Lyapunov stability. Besides, a less conservative sufficient condition is derived for asymptotical stability of FO systems. The stability analysis is done in the time domain. Numerical examples are given to show that the obtained conditions are effective and applicable in practice.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Zhou ◽  
Rui Ding ◽  
Yu-xia Cao

A hybrid projective synchronization scheme for two identical fractional-order chaotic systems is proposed in this paper. Based on the stability theory of fractional-order systems, a controller for the synchronization of two identical fractional-order chaotic systems is designed. This synchronization scheme needs not to absorb all the nonlinear terms of response system. Hybrid projective synchronization for the fractional-order Chen chaotic system and hybrid projective synchronization for the fractional-order hyperchaotic Lu system are used to demonstrate the validity and feasibility of the proposed scheme.


Author(s):  
Sunhua Huang ◽  
Runfan Zhang ◽  
Diyi Chen

This paper is concerned with the stability of nonlinear fractional-order time varying systems with Caputo derivative. By using Laplace transform, Mittag-Leffler function, and the Gronwall inequality, the sufficient condition that ensures local stability of fractional-order systems with fractional order α : 0<α≤1 and 1<α<2 is proposed, respectively. Moreover, the condition of the stability of fractional-order systems with a state-feedback controller is been put forward. Finally, a numerical example is presented to show the validity and feasibility of the proposed method.


1982 ◽  
Vol 104 (1) ◽  
pp. 27-32 ◽  
Author(s):  
S. N. Singh

Using the invariance principle of LaSalle [1], sufficient conditions for the existence of linear and nonlinear control laws for local and global asymptotic stability of nonlinear Hamiltonian systems are derived. An instability theorem is also presented which identifies the control laws from the given class which cannot achieve asymptotic stability. Some of the stability results are based on certain results for the univalence of nonlinear maps. A similar approach for the stabilization of bilinear systems which include nonconservative systems in elasticity is used and a necessary and sufficient condition for stabilization is obtained. An application to attitude control of a gyrostat Satellite is presented.


Author(s):  
A. M. Yousef ◽  
S. Z. Rida ◽  
Y. Gh. Gouda ◽  
A. S. Zaki

AbstractIn this paper, we investigate the dynamical behaviors of a fractional-order predator–prey with Holling type IV functional response and its discretized counterpart. First, we seek the local stability of equilibria for the fractional-order model. Also, the necessary and sufficient conditions of the stability of the discretized model are achieved. Bifurcation types (include transcritical, flip and Neimark–Sacker) and chaos are discussed in the discretized system. Finally, numerical simulations are executed to assure the validity of the obtained theoretical results.


2020 ◽  
Vol 4 (1) ◽  
pp. 8
Author(s):  
Xuefeng Zhang ◽  
Yuqing Yan

This paper is devoted to the admissibility issue of singular fractional order systems with order α ∈ ( 0 , 1 ) based on complex variables. Firstly, with regard to admissibility, necessary and sufficient conditions are obtained by strict LMI in complex plane. Then, an observer-based controller is designed to ensure system admissible. Finally, numerical examples are given to reveal the validity of the theoretical conclusions.


Sign in / Sign up

Export Citation Format

Share Document