MEASURABLE DYNAMICS ANALYSIS OF TRANSPORT IN THE GULF OF MEXICO DURING THE OIL SPILL

2012 ◽  
Vol 22 (03) ◽  
pp. 1230012 ◽  
Author(s):  
ERIK M. BOLLT ◽  
AARON LUTTMAN ◽  
SEAN KRAMER ◽  
RANIL BASNAYAKE

On April 20, 2010, an oil well cap explosion below the Deepwater Horizon, an off-shore oil rig in the Gulf of Mexico, started the worst human-caused submarine oil spill ever. Though an historic tragedy for the marine ecosystem, the unprecedented monitoring of the spill in real time by satellites and increased modeling of the natural oceanic flows has provided a wealth of data, allowing analysis of the flow dynamics governing the spread of the oil. In this work, we present the results of two computational analyses describing the mixing, mass transport, and flow dynamics of the oil dispersion in the Gulf of Mexico over the first 100 days of the spill. Transfer operator methods are used to determine the spatial partitioning of regions of homogeneous dynamics into almost-invariant sets, and Finite Time Lyapunov Exponents are used to compute pseudo-barriers to the mixing of the oil between these regions. The two methods give complementary results, generating a comprehensive description of the oil flow dynamics over time.

Author(s):  
LCDR John LaMorte ◽  
LT Rebecca Brooks

ABSTRACT During the evening of 20 April, 2010 U.S. Coast Guard District Eight Command Center watch standers received a report of an explosion aboard the Deepwater Horizon (DWH), an oil rig working on the Macondo oil well approximately 42 miles Southeast of Venice, LA (OSC Report, 2011). The explosion on board the DWH and resulting fires eventually destroyed the oil rig and caused it to sink into the Gulf of Mexico. Eleven crewmembers lost their lives in the tragic events that unfolded that night, and one of the nation's largest environmental disasters would soon follow. Estimates of the oil discharged from the Macondo oil well were between 12,000 and 25,000 barrels per day, and the response involved approximately 47,000 oil spill response personnel, 6,870 vessels, approximately 4.12 million feet of boom, and 17,500 National Guard personnel, five states (OSC Report, 2011). The massive oil spill lasted 87 days and estimates suggest that more than 200 million gallons of oil was discharged into the Gulf of Mexico, which stands as the largest oil spill event in U.S. history. From these massive response operations came important lessons learned for SONS event planning, preparedness, and response, as it became apparent during DWH response operations that oil spill response governance and doctrine was not well understood across the whole-of-government. This issue was well documented in the National Incident Commander's report and several recommendations were identified to address this issue. This paper will explore the steps taken within the U.S. Coast Guard's (USCG) SONS Exercise and Training Program to promote a better understanding of oil spill response governance and doctrine among Cabinet-level senior leadership and the interagency representatives that will ultimately be involved when the next SONS event happens.


Oceanography ◽  
2021 ◽  
Vol 34 (1) ◽  
pp. 30-43
Author(s):  
Larry McKinney ◽  
◽  
John Shepherd ◽  
Charles Wilson ◽  
William Hogarth ◽  
...  

The Gulf of Mexico is a place where the environment and the economy both coexist and contend. It is a resilient large marine ecosystem that has changed in response to many drivers and pressures that we are only now beginning to fully understand. Coastlines of the states that border the Gulf comprise about half of the US southern seaboard, and those states are capped by the vast Midwest. The Gulf drains most of North America and is both an economic keystone and an unintended waste receptacle. It is a renowned resource for seafood markets, recreational fishing, and beach destinations and an international maritime highway fueled by vast, but limited, hydrocarbon reserves. Today, more is known about the Gulf than was imagined possible only a few years ago. That gain in knowledge was driven by one of the greatest environmental disasters of this country’s history, the Deepwater Horizon oil spill. The multitude of response actions and subsequent funded research significantly contributed to expanding our knowledge and, perhaps most importantly, to guiding the work needed to restore the damage from that oil spill. Funding for further work should not wait for the next major disaster, which will be too late; progress must be maintained to ensure that the Gulf continues to be resilient.


2017 ◽  
Vol 2017 (1) ◽  
pp. 1931-1949
Author(s):  
Zhen-Gang Ji ◽  
Walter R. Johnson

ABSTRACT 2017-051: The U.S. Department of the Interior (DOI) Bureau of Ocean Energy Management (BOEM) maintains a leasing program for commercial oil and gas development on the Outer Continental Shelf in U.S. territorial waters. To evaluate the potential impacts of these activities, BOEM performs oil spill risk analysis (OSRA) using, in part, a statistical model for estimating the movement of hypothetical oil spills on the ocean surface based on model-generated surface wind and surface current. OSRA examines oil spill risks over long periods of time ranging from 5 years to decades. The latest OSRA analysis estimated the contact probabilities of oil spills in the Gulf of Mexico (GOM) region by modeling over 40 million hypothetical oil spill trajectories over extended areas of the U. S. continental shelf and tabulating the frequencies with which the simulated oil spills contacted designated natural resources within a specified number of days. The modeled ocean currents and wind fields used in the GOM analysis are from 1993 to 2007 (15 years). The OSRA model was also applied to analyze the contact probabilities of the Ixtoc Oil Spill, which happened on June 3, 1979 in the Bay of Campeche of the GOM and lasted for 10 months. The Ixtoc I Oil Well suffered a blowout, resulting in one of the largest oil spills in history and 3 million barrels of oil spilled. The OSRA model was applied to simulate particle trajectories released at the Ixtoc location using the same GOM current and wind field data from 1993 through 2007. The model results for the Ixtoc simulation were consistent with the descriptions of the oil spill by Hooper (1982), which shows that the OSRA model can provide a reasonable projection of the contact probabilities of hypothetical oil spills.


Author(s):  
Diego Garcia Giraldo ◽  
Ronald W. Yeung

The Deepwater Horizon Mobile Offshore Drilling Unit (MODU) was one of several classes of floatable drilling machines. The explosion on April 20, 2010 led to the worst ecological disaster with regard to oil spills in the USA. The objective of this paper is to develop a logical and independent estimate of the oil flow rate into the Gulf of Mexico produced by the rupture in this rig. We employed the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) satellite photographs [1] starting from the days immediately following the disaster to determine the size and intensity of the oil spill. From these images, we obtained the surface area of the oil spill and calculated the oil flow rate by two different methods based on contrasting luminance within the area. The first assumes a constant thickness for the total area with upper and lower bounds for the thickness. The second method separates the spill area into different patches, based on the luminance levels of each. It was found that the probability density function (PDF) of the luminance plots typically showed some natural grouping, allowing patches to be defined. Each patch maps to a specific thickness and the result of the addition of all the patches provides a more accurate average thickness of the spill. With the assumption that evaporation and other loss amounted to 40% of the spill, we obtained, as a result of this analysis procedure, a minimum flow rate of 9,300 barrels per day and a maximum of 93,000 barrels per day using the first method. A value of 51,200 barrels per day was obtained using the method based on patch separation. This latter estimate was a reasonable value obtained based on this relatively simple method but with no details presented in an Extended Abstract in OMAE2012 [4]. It is remarkably consistent with the “official US-Govt. estimates” of [2, 3].


Author(s):  
Timur A. Ishmuratov ◽  
Rif G. Sultanov ◽  
Milyausha N. Khusnutdinova

The study is devoted to the mathematical description of the process of oil outflow in places of leakage of the tubing string, which allows a computer to locate a leakage in the tubing. The authors propose methodology for identifying defects in the tubing and determining the location of the leak. The uniqueness of this methodology lies in quick determination of the place of leakage without the use of specialists, sophisticated and specialized equipment. Mathematical modeling of oil flow in the tubing requires the apparatus of continuum mechanics. It is a general belief that the movement of oil in the pipe flows at low speeds due to its outflow from the hole. Using the general equations of mass and energy balance, the authors have obtained differential equations of fluid motion in a vertical pipe in the process of its outflow from the tubing and in the process of injection. Analytical expressions are the solution to these equations, as they can help in estimating the degree of damage and its location, as well as the feasibility of its eliminating. The results show that an increase in the leakage and injection times leads to improving accuracy of locating damage. Thus, when conducting various geological and technical measures (GTM) at the well, it is possible to assess the presence of leakage and its intensity when deciding on the repair of tubing.


2021 ◽  
Vol 9 (8) ◽  
pp. 793
Author(s):  
Abigail Uribe-Martínez ◽  
María de los Angeles Liceaga-Correa ◽  
Eduardo Cuevas

Marine turtles are globally endangered species that spend more than 95% of their life cycle in in-water habitats. Nevertheless, most of the conservation, recovery and research efforts have targeted the on-land habitats, due to their easier access, where adult females lay their eggs. Targeting the large knowledge gaps on the in-water critical habitats of turtles, particularly in the Large Marine Ecosystem Gulf of Mexico, is crucial for their conservation and recovery in the long term. We used satellite telemetry to track 85 nesting females from their beaches after they nested to identify their feeding and residency habitats, their migratory corridors and to describe the context for those areas. We delimited major migratory corridors in the southern Gulf of Mexico and West Caribbean and described physical features of internesting and feeding home ranges located mainly around the Yucatan Peninsula and Veracruz, Mexico. We also contributed by describing general aggregation and movement patterns for the four marine turtle species in the Atlantic, expanding the knowledge of the studied species. Several tracked individuals emigrated from the Gulf of Mexico to as far as Nicaragua, Honduras, and the Bahamas. This information is critical for identifying gaps in marine protection and for deciphering the spatial connectivity in large ocean basins, and it provides an opportunity to assess potential impacts on marine turtle populations and their habitats.


2012 ◽  
Vol 109 (50) ◽  
pp. 20303-20308 ◽  
Author(s):  
H. K. White ◽  
P.-Y. Hsing ◽  
W. Cho ◽  
T. M. Shank ◽  
E. E. Cordes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document