Bifurcation Analysis of a Power System Model with Three Machines and Four Buses

2016 ◽  
Vol 26 (05) ◽  
pp. 1650082 ◽  
Author(s):  
Yu Chang ◽  
Xiaoli Wang ◽  
Dashun Xu

The bifurcation phenomena in a power system with three machines and four buses are investigated by applying bifurcation theory and harmonic balance method. The existence of saddle-node bifurcation and Hopf bifurcation is analyzed in time domain and in frequency domain, respectively. The approach of the fourth-order harmonic balance is then applied to derive the approximate expressions of periodic solutions bifurcated from Hopf bifurcations and predict their frequencies and amplitudes. Since the approach is valid only in some neighborhood of a bifurcation point, numerical simulations and the software Auto2007 are utilized to verify the predictions and further study bifurcations of these periodic solutions. It is shown that the power system may have various types of bifurcations, including period-doubling bifurcation, torus bifurcation, cyclic fold bifurcation, and complex dynamical behaviors, including quasi-periodic oscillations and chaotic behavior. These findings help to better understand the dynamics of the power system and may provide insight into the instability of power systems.

2015 ◽  
Vol 25 (06) ◽  
pp. 1550093 ◽  
Author(s):  
Xiaoli Wang ◽  
Yu Chang ◽  
Dashun Xu

We investigate the bifurcation phenomena in a Belousov–Zhabotinsky reaction model by applying Hopf bifurcation theory in frequency domain and harmonic balance method. The high accurate predictions, i.e. fourth-order harmonic balance approximation, on frequencies, amplitudes, and approximation expressions for periodic solutions emerging from Hopf bifurcation are provided. We also detect the stability and location of these periodic solutions. Numerical simulations not only confirm the theoretical analysis results but also illustrate some complex oscillations such as a cascade of period-doubling bifurcation, quasi-periodic solution, and period-doubling route to chaos. All these results improve the understanding of the dynamics of the model.


Author(s):  
Frederic Schreyer ◽  
Remco Leine

Several numerical approaches have been developed to capture nonlinear effects of dynamical systems. In this paper we present a mixed shooting-harmonic balance method to solve large mechanical systems with local nonlinearities efficiently. The Harmonic Balance Method as well as the shooting method have both their pros and cons. The proposed mixed shooting-HBM approach combines the efficiency of HBM and the accuracy of the shooting method and has therefore advantages of both.


Author(s):  
O. Thomas ◽  
A. Lazarus ◽  
C. Touze´

In this paper, we present a validation on a practical example of a harmonic-based numerical method to determine the local stability of periodic solutions of dynamical systems. Based on Floquet theory and Fourier series expansion (Hill method), we propose a simple strategy to sort the relevant physical eigenvalues among the expanded numerical spectrum of the linear periodic system governing the perturbed solution. By mixing the Harmonic Balance Method and Asymptotic Numerical Method continuation technique with the developed Hill method, we obtain a purely-frequency based continuation tool able to compute the stability of the continued periodic solutions in a reduced computation time. This procedure is validated by considering an externally forced string and computing the complete bifurcation diagram with the stability of the periodic solutions. The particular coupled regimes are exhibited and found in excellent agreement with results of the literature, allowing a method validation.


2014 ◽  
Vol 24 (12) ◽  
pp. 1450159 ◽  
Author(s):  
Fengxia Wang ◽  
Yuhui Qu

A rotating beam subjected to a torsional excitation is studied in this paper. Both quadratic and cubic geometric stiffening nonlinearities are retained in the equation of motion, and the reduced model is obtained via the Galerkin method. Saddle-node bifurcations and Hopf bifurcations of the period-1 motions of the model were obtained via the higher order harmonic balance method. The period-2 and period-4 solutions, which are emanated from the period-1 and period-2 motions, respectively, are obtained by the combined implementation of the harmonic balance method, Floquet theory, and Discrete Fourier transform (DFT). The analytical periodic solutions and their stabilities are verified through numerical simulation.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
D. O. Tcheutchoua Fossi ◽  
P. Woafo

The purpose of this paper is to study the dynamics of an electromechanical system consisting of a torsion-bar or two mechanical pumps activated by an electromotor. Oscillatory solutions showing the jump and hysteresis phenomena are obtained using the harmonic balance method and direct numerical simulation. Chaotic behavior is presented via the bifurcation diagrams and corresponding Lyapunov exponent. Some implications of the results on the applications of the devices are discussed.


2009 ◽  
Vol 23 (04) ◽  
pp. 521-536 ◽  
Author(s):  
A. BELÉNDEZ ◽  
D. I. MÉNDEZ ◽  
M. L. ALVAREZ ◽  
C. PASCUAL ◽  
T. BELÉNDEZ

The analytical approximate technique developed by Wu et al. for conservative oscillators with odd nonlinearity is used to construct approximate frequency-amplitude relations and periodic solutions to the relativistic oscillator. By combining Newton's method with the method of harmonic balance, analytical approximations to the oscillation period and periodic solutions are constructed for this oscillator. The approximate periods obtained are valid for the complete range of oscillation amplitudes, A, and the discrepancy between the second approximate period and the exact one never exceeds 1.24%, and it tends to 1.09% when A tends to infinity. Excellent agreement of the approximate periods and periodic solutions with the exact ones are demonstrated and discussed.


Author(s):  
Jianhua Tang ◽  
Chuntao Yin

Abstract In this paper, the harmonic balance method and its variants are used to analyze the response of Mathieu–Duffing oscillator with Caputo derivative. First, the exact and approximate expressions of the Caputo derivatives of trigonometric function and composite function are derived. Next, using the approximate expression of the Caputo derivative of the composite function, the resonance of Duffing oscillator with Caputo derivative is analyzed by the harmonic balance method. Finally, Mathieu–Duffing oscillator with Caputo derivative is approximated by three kinds of methods, i.e., the harmonic balance method, the residue harmonic balance method and the improved harmonic balance method. The corresponding numerical simulations are given to illustrate the performance of these methods as well. The results show that the residue harmonic balance method is more precise than the harmonic balance method and the improved harmonic balance method in analyzing the dynamic response of Mathieu–Duffing oscillator with Caputo derivative.


2019 ◽  
Vol 29 (03) ◽  
pp. 1930007 ◽  
Author(s):  
Rafal Rusinek ◽  
Joanna Rekas ◽  
Krzysztof Kecik

This paper focuses on periodic solutions for a one-degree-of-freedom oscillator with a spring made of shape memory alloy (SMA). However, when periodic solutions are unstable, irregular motion is identified numerically. The shape memory spring is described by a polynomial characteristic in this model. The harmonic balance method (HBM) is employed to find periodic solutions near the primary resonance. The solutions are confronted with results obtained by the multiple time scales method and numerical simulations. Finally, the effect of system parameters and temperature on the system dynamics is discussed.


Sign in / Sign up

Export Citation Format

Share Document