scholarly journals Devaney Chaos in Nonautonomous Discrete Systems

2016 ◽  
Vol 26 (11) ◽  
pp. 1650190 ◽  
Author(s):  
Hao Zhu ◽  
Yuming Shi ◽  
Hua Shao

This paper is concerned with Devaney chaos in nonautonomous discrete systems. It is shown that in its definition, the two former conditions, i.e. transitivity and density of periodic points, in a set imply the last one, i.e. sensitivity, in the case that the set is unbounded, while a similar result holds under two additional conditions in the other case that the set is bounded. Some chaotic behavior is studied for a class of nonautonomous discrete systems, each of which is governed by a convergent sequence of continuous maps. In addition, the concepts of some pseudo-orbits and shadowing properties are introduced for nonautonomous discrete systems, and it is shown that some shadowing properties of the system and density of periodic points imply that the system is Devaney chaotic under the condition that the sequence of continuous maps is uniformly convergent in a compact metric space.

2001 ◽  
Vol 2 (1) ◽  
pp. 51 ◽  
Author(s):  
Francisco Balibrea ◽  
J.S. Cánovas ◽  
A. Linero

<p>We present some results concerning the topological dynamics of antitriangular maps, F:X<sup>2</sup>→ X<sup>2 </sup>with the formvF(x,y)=(g(y),f(x)), where (X,d) is a compact metric space and f,g : X→ X are continuous maps. We make an special analysis in the case of X = [0,1].</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Heng Liu ◽  
Fengchun Lei ◽  
Lidong Wang

Consider the surjective, continuous mapf:X→Xand the continuous mapf¯of𝒦(X)induced byf, whereXis a compact metric space and𝒦(X)is the space of all nonempty compact subsets ofXendowed with the Hausdorff metric. In this paper, we give a short proof that iff¯is Li-Yoke sensitive, thenfis Li-Yorke sensitive. Furthermore, we give an example showing that Li-Yorke sensitivity offdoes not imply Li-Yorke sensitivity off¯.


2017 ◽  
Vol 4 (1) ◽  
pp. 98-107
Author(s):  
Ali Barzanouni

Abstract Let (X, F = {fn}n =0∞) be a non-autonomous discrete system by a compact metric space X and continuous maps fn : X → X, n = 0, 1, ....We introduce functional envelope (S(X), G = {Gn}n =0∞), of (X, F = {fn}n =0∞), where S(X) is the space of all continuous self maps of X and the map Gn : S(X) → S(X) is defined by Gn(ϕ) = Fn ∘ ϕ, Fn = fn ∘ fn-1 ∘ . . . ∘ f1 ∘ f0. The paper mainly deals with the connection between the properties of a system and the properties of its functional envelope.


2019 ◽  
Vol 29 (1) ◽  
pp. 137-152 ◽  
Author(s):  
Ross G. Pinsky

AbstractFor $$\tau \in {S_3}$$, let $$\mu _n^\tau $$ denote the uniformly random probability measure on the set of $$\tau $$-avoiding permutations in $${S_n}$$. Let $${\mathbb {N}^*} = {\mathbb {N}} \cup \{ \infty \} $$ with an appropriate metric and denote by $$S({\mathbb{N}},{\mathbb{N}^*})$$ the compact metric space consisting of functions $$\sigma {\rm{ = }}\{ {\sigma _i}\} _{i = 1}^\infty {\rm{ }}$$ from $$\mathbb {N}$$ to $${\mathbb {N}^ * }$$ which are injections when restricted to $${\sigma ^{ - 1}}(\mathbb {N})$$; that is, if $${\sigma _i}{\rm{ = }}{\sigma _j}$$, $$i \ne j$$, then $${\sigma _i} = \infty $$. Extending permutations $$\sigma \in {S_n}$$ by defining $${\sigma _j} = j$$, for $$j \gt n$$, we have $${S_n} \subset S({\mathbb{N}},{{\mathbb{N}}^*})$$. For each $$\tau \in {S_3}$$, we study the limiting behaviour of the measures $$\{ \mu _n^\tau \} _{n = 1}^\infty $$ on $$S({\mathbb{N}},{\mathbb{N}^*})$$. We obtain partial results for the permutation $$\tau = 321$$ and complete results for the other five permutations $$\tau \in {S_3}$$.


2006 ◽  
Vol 2006 ◽  
pp. 1-10 ◽  
Author(s):  
Xiao-Song Yang ◽  
Xiaoming Bai

We present a simple theory on topological entropy of the continuous maps defined on a compact metric space, and establish some inequalities of topological entropy. As an application of the results of this paper, we give a new simple proof of chaos in the so-calledN-buffer switched flow networks.


1991 ◽  
Vol 11 (4) ◽  
pp. 709-729 ◽  
Author(s):  
Mike Hurley

AbstractIn the study of a dynamical systemf:X→Xgenerated by a continuous mapfon a compact metric spaceX, thechain recurrent setis an object of fundamental interest. This set was defined by C. Conley, who showed that it has two rather different looking, but equivalent, definitions: one given in terms of ‘approximate orbits’ through individual points (pseudo-orbits, or ε-chains), and the other given in terms of the global structure of the class of ‘attractors’ and ‘basins of attraction’ off. The first of these definitions generalizes directly to dynamical systems on any metric space, compact or not. The main purpose of this paper is to extend the second definition to non-compact spaces in such a way that it remains equivalent to the first.


2010 ◽  
Vol 31 (4) ◽  
pp. 1163-1182 ◽  
Author(s):  
VAUGHN CLIMENHAGA

AbstractWe show that Bowen’s equation, which characterizes the Hausdorff dimension of certain sets in terms of the topological pressure of an expanding conformal map, applies in greater generality than has been heretofore established. In particular, we consider an arbitrary subset Z of a compact metric space and require only that the lower Lyapunov exponents be positive on Z, together with a tempered contraction condition. Among other things, this allows us to compute the dimension spectrum for Lyapunov exponents for maps with parabolic periodic points, and to relate the Hausdorff dimension to the topological entropy for arbitrary subsets of symbolic space with the appropriate metric.


1988 ◽  
Vol 103 (3) ◽  
pp. 481-486
Author(s):  
José M. R. Sanjurjo

The relationship between components and movability for compacta (i.e. compact metric spaces) was described by Borsuk in [5]. Borsuk proved that if each component of a compactum X is movable, then so is X. More recently Segal and Spiez[19], motivated by results of Alonso Morón[1], have constructed a (non-compact) metric space X of small inductive dimension zero and such that X is non-movable. The construction of Segal and Spiez was based on the famous space of P. Roy [16]. On the other hand, K. Borsuk gave in [5] an example of a movable compactum with non-movable components. The structure of such compacta was studied by Oledzki in [15], where he obtained an interesting result stating that if X is a movable compactum then the set of movable components of X is dense in the space of components of X. Oledzki's result was later strengthened by Nowak[14], who proved that if all movable components of a movable compactum X are of deformation dimension at most n, then so are the non-movable components and the compactum X itself.


1985 ◽  
Vol 5 (3) ◽  
pp. 321-327 ◽  
Author(s):  
Louis Block ◽  
John E. Franke

AbstractCharles Conley has shown that for a flow on a compact metric space, a point x is chain recurrent if and only if any attractor which contains the & ω-limit set of x also contains x. In this paper we show that the same statement holds for a continuous map of a compact metric space to itself, and additional equivalent conditions can be given. A stronger result is obtained if the space is locally connected.It follows, as a special case, that if a map of the circle to itself has no periodic points then every point is chain recurrent. Also, for any homeomorphism of the circle to itself, the chain recurrent set is either the set of periodic points or the entire circle. Finally, we use the equivalent conditions mentioned above to show that for any continuous map f of a compact space to itself, if the non-wandering set equals the chain recurrent set then f does not permit Ω-explosions. The converse holds on manifolds.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550115 ◽  
Author(s):  
Jiandong Yin ◽  
Zuoling Zhou

Let X be a compact metric space and f : X → X be a continuous map. In this paper, ergodic chaos and strongly ergodic chaos are introduced, and it is proven that f is strongly ergodically chaotic if f is transitive but not minimal and has a full measure center. In addition, some sufficient conditions for f to be Ruelle–Takens chaotic are presented. For instance, we prove that f is Ruelle–Takens chaotic if f is transitive and there exists a countable base [Formula: see text] of X such that for each i > 0, the meeting time set N(Ui, Ui) for Ui with respect to itself has lower density larger than [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document