Bifurcation Analysis of a Prey–Predator Model with Beddington–DeAngelis Type Functional Response and Allee Effect in Prey

2020 ◽  
Vol 30 (16) ◽  
pp. 2050238
Author(s):  
Koushik Garain ◽  
Partha Sarathi Mandal

The article aims to study a prey–predator model which includes the Allee effect phenomena in prey growth function, density dependent death rate for predators and Beddington–DeAngelis type functional response. We notice the changes in the existence and stability of the equilibrium points due to the Allee effect. To investigate the complete global dynamics of the Allee model, we present here a two-parametric bifurcation diagram which describes the effect of density dependent death rate parameter of predator on dynamical changes of the system. We have also analyzed all possible local and global bifurcations that the system could go through, namely transcritical bifurcation, saddle-node bifurcation, Hopf-bifurcation, cusp bifurcation, Bogdanov–Takens bifurcation and homoclinic bifurcation. Finally, the impact of the Allee effect in the considered system is investigated by comparing the dynamics of both the systems with and without Allee effect.

2015 ◽  
Vol 25 (03) ◽  
pp. 1530007 ◽  
Author(s):  
Moitri Sen ◽  
Malay Banerjee

In this work we have considered a prey–predator model with strong Allee effect in the prey growth function, Holling type-II functional response and density dependent death rate for predators. It presents a comprehensive study of the complete global dynamics for the considered system. Especially to see the effect of the density dependent death rate of predator on the system behavior, we have presented the two parametric bifurcation diagrams taking it as one of the bifurcation parameters. In course of that we have explored all possible local and global bifurcations that the system could undergo, namely the existence of transcritical bifurcation, saddle node bifurcation, cusp bifurcation, Hopf-bifurcation, Bogdanov–Takens bifurcation and Bautin bifurcation respectively.


2020 ◽  
Vol 30 (16) ◽  
pp. 2050239
Author(s):  
Udai Kumar ◽  
Partha Sarathi Mandal

Many important factors in ecological communities are related to the interplay between predation and competition. Intraguild predation or IGP is a mixture of predation and competition which is a very basic three-dimensional system in food webs where two species are related to predator–prey relationship and are also competing for a shared prey. On the other hand, Allee effect is also a very important ecological factor which causes significant changes to the system dynamics. In this work, we consider a intraguild predation model in which predator is specialist, the growth of shared prey population is subjected to additive Allee effect and there is Holling-Type III functional response between IG prey and IG predator. We analyze the impact of Allee effect on the global dynamics of the system with the prior knowledge of the dynamics of the model without Allee effect. Our theoretical and numerical analyses suggest that: (1) Trivial equilibrium point is always locally asymptotically stable and it may be globally stable also. Hence, all the populations may go to extinction depending upon initial conditions; (2) Bistability is observed between unique interior equilibrium point and trivial equilibrium point or between boundary equilibrium point and trivial equilibrium point; (3) Multiple interior equilibrium points exist under certain parameters range. We also provide here a comprehensive study of bifurcation analysis by considering Allee effect as one of the bifurcation parameters. We observed that Allee effect can generate all possible bifurcations such as transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation, Bogdanov–Taken bifurcation and Bautin bifurcation. Finally, we compared our model with the IGP model without Allee effect for better understanding the impact of Allee effect on the system dynamics.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Dahlia Khaled Bahlool ◽  
Huda Abdul Satar ◽  
Hiba Abdullah Ibrahim

In this paper, a mathematical model consisting of a prey-predator system incorporating infectious disease in the prey has been proposed and analyzed. It is assumed that the predator preys upon the nonrefugees prey only according to the modified Holling type-II functional response. There is a harvesting process from the predator. The existence and uniqueness of the solution in addition to their bounded are discussed. The stability analysis of the model around all possible equilibrium points is investigated. The persistence conditions of the system are established. Local bifurcation analysis in view of the Sotomayor theorem is carried out. Numerical simulation has been applied to investigate the global dynamics and specify the effect of varying the parameters. It is observed that the system has a chaotic dynamics.


2021 ◽  
Vol 31 (03) ◽  
pp. 2150050
Author(s):  
Demou Luo ◽  
Qiru Wang

Of concern is the global dynamics of a two-species Holling-II amensalism system with nonlinear growth rate. The existence and stability of trivial equilibrium, semi-trivial equilibria, interior equilibria and infinite singularity are studied. Under different parameters, there exist two stable equilibria which means that this model is not always globally asymptotically stable. Together with the existence of all possible equilibria and their stability, saddle connection and close orbits, we derive some conditions for transcritical bifurcation and saddle-node bifurcation. Furthermore, the global dynamics of the model is performed. Next, we incorporate Allee effect on the first species and offer a new analysis of equilibria and bifurcation discussion of the model. Finally, several numerical examples are performed to verify our theoretical results.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhenzhen Shi ◽  
Qingjian Li ◽  
Weiming Li ◽  
Huidong Cheng

An integrated pest management prey-predator model with ratio-dependent and impulsive feedback control is investigated in this paper. Firstly, we determine the Poincaré map which is defined on the phase set and discuss its main properties including monotonicity, continuity, and discontinuity. Secondly, the existence and stability of the boundary order-one periodic solution are proved by the method of Poincaré map. According to the Poincaré map and related differential equation theory, the conditions of the existence and global stability of the order-one periodic solution are obtained when ΦyA<yA, and we prove the sufficient and necessary conditions for the global asymptotic stability of the order-one periodic solution when ΦyA>yA. Furthermore, we prove the existence of the order-kk≥2 periodic solution under certain conditions. Finally, we verify the main results by numerical simulation.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 518
Author(s):  
Christopher Saaha Bornaa ◽  
Baba Seidu ◽  
Yakubu Ibrahim Seini

A deterministic model is proposed to describe the transmission dynamics of coronavirus infection with early interventions. Epidemiological studies have employed modeling to unravel knowledge that transformed the lives of families, communities, nations and the entire globe. The study established the stability of both disease free and endemic equilibria. Stability occurs when the reproduction number, R0, is less than unity for both disease free and endemic equilibrium points. The global stability of the disease-free equilibrium point of the model is established whenever the basic reproduction number R0 is less than or equal to unity. The reproduction number is also shown to be directly related to the transmission probability (β), rate at which latently infected individuals join the infected class (δ) and rate of recruitment (Λ). It is inversely related to natural death rate (μ), rate of early treatment (τ1), rate of hospitalization of infected individuals (θ) and Covid-induced death rate (σ). The analytical results established are confirmed by numerical simulation of the model.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Banshidhar Sahoo

We have proposed a nutrient-consumer-predator model with additional food to predator, at variable nutrient enrichment levels. The boundedness property and the conditions for local stability of boundary and interior equilibrium points of the system are derived. Bifurcation analysis is done with respect to quality and quantity of additional food and consumer’s death rate for the model. The system has stable as well as unstable dynamics depending on supply of additional food to predator. This model shows that supply of additional food plays an important role in the biological controllability of the system.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Xinxin Liu ◽  
Qingdao Huang

AbstractA new way to study the harvested predator–prey system is presented by analyzing the dynamics of two-prey and one-predator model, in which two teams of prey are interacting with one team of predators and the harvesting functions for two prey species takes different forms. Firstly, we make a brief analysis of the dynamics of the two subsystems which include one predator and one prey, respectively. The positivity and boundedness of the solutions are verified. The existence and stability of seven equilibrium points of the three-species model are further studied. Specifically, the global stability analysis of the coexistence equilibrium point is investigated. The problem of maximum sustainable yield and dynamic optimal yield in finite time is studied. Numerical simulations are performed using MATLAB from four aspects: the role of the carrying capacity of prey, the simulation about the model equations around three biologically significant steady states, simulation for the yield problem of model system, and the comparison between the two forms of harvesting functions. We obtain that the new form of harvesting function is more realistic than the traditional form in the given model, which may be a better reflection of the role of human-made disturbance in the development of the biological system.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 518
Author(s):  
Christopher Saaha Bornaa ◽  
Baba Seidu ◽  
Yakubu Ibrahim Seini

A deterministic model is proposed to describe the transmission dynamics of coronavirus infection with early interventions. Epidemiological studies have employed modeling to unravel knowledge that transformed the lives of families, communities, nations and the entire globe. The study established the stability of both disease free and endemic equilibria. Stability occurs when the reproduction number, R0, is less than unity for both disease free and endemic equilibrium points. The global stability of the disease-free equilibrium point of the model is established whenever the basic reproduction number R0 is less than or equal to unity. The reproduction number is also shown to be directly related to the transmission probability (β), rate at which latently infected individuals join the infected class (δ) and rate of recruitment (Λ). It is inversely related to natural death rate (μ), rate of early treatment (τ1), rate of hospitalization of infected individuals (θ) and Covid-induced death rate (σ). The analytical results established are confirmed by numerical simulation of the model.


Sign in / Sign up

Export Citation Format

Share Document