scholarly journals Poincaré Map Approach to Global Dynamics of the Integrated Pest Management Prey-Predator Model

Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zhenzhen Shi ◽  
Qingjian Li ◽  
Weiming Li ◽  
Huidong Cheng

An integrated pest management prey-predator model with ratio-dependent and impulsive feedback control is investigated in this paper. Firstly, we determine the Poincaré map which is defined on the phase set and discuss its main properties including monotonicity, continuity, and discontinuity. Secondly, the existence and stability of the boundary order-one periodic solution are proved by the method of Poincaré map. According to the Poincaré map and related differential equation theory, the conditions of the existence and global stability of the order-one periodic solution are obtained when ΦyA<yA, and we prove the sufficient and necessary conditions for the global asymptotic stability of the order-one periodic solution when ΦyA>yA. Furthermore, we prove the existence of the order-kk≥2 periodic solution under certain conditions. Finally, we verify the main results by numerical simulation.

2018 ◽  
Vol 28 (12) ◽  
pp. 1850147 ◽  
Author(s):  
Sanyi Tang ◽  
Xuewen Tan ◽  
Jin Yang ◽  
Juhua Liang

A planar predator–prey impacting system model with a nonmonotonic functional response function is proposed and analyzed. The existence and stability of a boundary order-1 periodic solution were investigated and the threshold conditions for a transcritical bifurcation and stable switching were obtained, and also the definition and properties of the Poincaré map are discussed. The main results indicate that multiple discontinuous points of the Poincaré map could induce the coexistence of multiple order-1 periodic solutions. Numerical analyses reveal the complex dynamics of the model including periodic adding and halving bifurcations, which could result in multiple active phases, among them rapid spiking and quiescence phases which can switch from one to another and consequently create complex bursting patterns. The main results reveal that it is beneficial to restore the stability and balance of a ecosystem for species with group defence by moderately reducing population densities and the group defence capacity.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Changtong Li ◽  
Sanyi Tang ◽  
Robert A. Cheke

Abstract An expectation for optimal integrated pest management is that the instantaneous numbers of natural enemies released should depend on the densities of both pest and natural enemy in the field. For this, a generalised predator–prey model with nonlinear impulsive control tactics is proposed and its dynamics is investigated. The threshold conditions for the global stability of the pest-free periodic solution are obtained based on the Floquet theorem and analytic methods. Also, the sufficient conditions for permanence are given. Additionally, the problem of finding a nontrivial periodic solution is confirmed by showing the existence of a nontrivial fixed point of the model’s stroboscopic map determined by a time snapshot equal to the common impulsive period. In order to address the effects of nonlinear pulse control on the dynamics and success of pest control, a predator–prey model incorporating the Holling type II functional response function as an example is investigated. Finally, numerical simulations show that the proposed model has very complex dynamical behaviour, including period-doubling bifurcation, chaotic solutions, chaos crisis, period-halving bifurcations and periodic windows. Moreover, there exists an interesting phenomenon whereby period-doubling bifurcation and period-halving bifurcation always coexist when nonlinear impulsive controls are adopted, which makes the dynamical behaviour of the model more complicated, resulting in difficulties when designing successful pest control strategies.


2019 ◽  
Vol 29 (08) ◽  
pp. 1950101 ◽  
Author(s):  
Jin Yang ◽  
Yuanshun Tan ◽  
Robert A. Cheke

We propose a novel impulsive chemostat model with the substrate concentration as the basis for the implementation of control strategies, and then investigate the model’s global dynamics. The exact domains of the impulsive and phase sets are discussed in the light of phase portraits of the model, and then we define the Poincaré map and study its complex properties. Furthermore, the existence and stability of the microorganism eradication periodic solution are addressed, and the analysis of a transcritical bifurcation reveals that an order-1 periodic solution is generated. We also provide the conditions for the global stability of an order-1 periodic solution and show the existence of order-[Formula: see text] [Formula: see text] periodic solutions. Moreover, the PRCC results and bifurcation analyses not only substantiate our results, but also indicate that the proposed system exists with complex dynamics. Finally, biological implications related to the theoretical results are discussed.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yufei Wang ◽  
Huidong Cheng ◽  
Qingjian Li

In this paper, an impulsive semidynamic system of the relationship between plankton and herbivore is established, and the Poincaré map method is used to extend the new properties of the model. We define the Poincaré map of the impulsive point series in phase concentration and analyze the characteristics. A comprehensive and detailed analysis of the periodic solution is performed. In addition, the numerical simulations illustrate the correctness of our arguments. The results show that plankton and herbivore can survive stably under effective control.


2021 ◽  
Author(s):  
János Lelkes ◽  
Tamás KALMÁR-NAGY

Abstract The dynamics of a hysteretic relay oscillator with harmonic forcing is investigated. Periodic excitation of the system results in periodic, quasi-periodic, chaotic and unbounded behavior. A Poincare map is constructed to simplify the mathematical analysis. The stability of the xed points of the Poincare map corresponding to period-one solutions is investigated. By varying the forcing parameters, we observed a saddle-center and a pitchfork bifurcation of two centers and a saddle type xed point. The global dynamics of the system is investigated, showing discontinuity induced bifurcations of the xed points.


2007 ◽  
Vol 15 (02) ◽  
pp. 219-234 ◽  
Author(s):  
XINZHU MENG ◽  
ZHITAO SONG ◽  
LANSUN CHEN

A state-dependent impulsive SI epidemic model for integrated pest management (IPM) is proposed and investigated. We shall examine an optimal impulsive control problem in the management of an epidemic to control a pest population. We introduce a small amount of pathogen into a pest population with the expectation that it will generate an epidemic and that it will subsequently be endemic such that the number of pests is no larger than the given economic threshold (ET), so that the pests cannot cause economic damage. This is the biological control strategy given in the present paper. The combination strategy of pulse capturing (susceptible individuals) and pulse releasing (infective individuals) is implemented in the model if the number of pests (susceptible) reaches the ET. Firstly, the impulsive control problem is to drive the pest population below a given pest level and to do so in a manner which minimizes a weighted sum of the cost of using the control. Hence, for a one time impulsive effect we obtain the optimal strategy in terms of total cost such that the number of pests is no larger than the given ET. Secondly, we show the existence of periodic solution with the number of pests no larger than ET, and by using the Analogue of the Poincaré Criterion we prove that it is asymptotically stable under a planned impulsive control strategy. Further, the period T of the periodic solution is calculated, which can be used to estimate how long the pest population will take to return back to its pre-control level. The main feature of the present paper is to apply an SI infectious disease model to IPM, and some pests control strategies are given.


Author(s):  
Tieying Wang

A new microbial insecticide mathematical model with density dependent for pest is proposed in this paper. First, the system without impulsive state feedback control is considered. The existence and stability of equilibria are investigated and the properties of equilibria under different conditions are verified by using numerical simulation. Since the system without pulse has two positive equilibria under some additional assumptions, the system is not globally asymptotically stable. Based on the stability analysis of equilibria, limit cycle, outer boundary line and Sotomayor’s theorem, the existence of saddle-node bifurcation and global dynamics of the system are obtained. Second, we consider homoclinic bifurcation of the system with impulsive state feedback control. The existence of order-1 homoclinic orbit of the system is studied. When the impulsive function is slightly disturbed, the homoclinic orbit breaks and bifurcates order-1 periodic solution. The existence and stability of order-1 periodic solution are obtained by means of theory of semi-continuous dynamic system.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Dezhao Li ◽  
Yu Liu ◽  
Huidong Cheng

The phytoplankton-fish model for catching fish with impulsive feedback control is established in this paper. Firstly, the Poincaré map for the phytoplankton-fish model is defined, and the properties of monotonicity, continuity, differentiability, and fixed point of Poincaré map are analyzed. In particular, the continuous and discontinuous properties of Poincaré map under different conditions are discussed. Secondly, we conduct the analysis of the necessary and sufficient conditions for the existence, uniqueness, and global stability of the order-1 periodic solution of the phytoplankton-fish model and obtain the sufficient conditions for the existence of the order-kk≥2 periodic solution of the system. Numerical simulation shows the correctness of our results which show that phytoplankton and fish with the impulsive feedback control can live stably under certain conditions, and the results have certain reference value for the dynamic change of phytoplankton in aquatic ecosystems.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Yefeng He ◽  
Yepeng Xing

This paper is mainly concerned with the existence, stability, and bifurcations of periodic solutions of a certain scalar impulsive differential equations on Moebius stripe. Some sufficient conditions are obtained to ensure the existence and stability of one-side periodic orbit and two-side periodic orbit of impulsive differential equations on Moebius stripe by employing displacement functions. Furthermore, double-periodic bifurcation is also studied by using Poincaré map.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Huidong Cheng ◽  
Fang Wang ◽  
Tongqian Zhang

According to the integrated pest management strategies, we propose a model for pest control which adopts different control methods at different thresholds. By using differential equation geometry theory and the method of successor functions, we prove the existence of order one periodic solution of such system, and further, the attractiveness of the order one periodic solution by sequence convergence rules and qualitative analysis. Numerical simulations are carried out to illustrate the feasibility of our main results. Our results show that our method used in this paper is more efficient and easier than the existing ones for proving the existence of order one periodic solution.


Sign in / Sign up

Export Citation Format

Share Document