Limit Cycles of Planar Piecewise Smooth Quadratic Systems with Focus-Parabolic Type Critical Points

2021 ◽  
Vol 31 (06) ◽  
pp. 2150090
Author(s):  
Liping Sun ◽  
Zhengdong Du

It is very important to determine the maximum number of limit cycles of planar piecewise smooth quadratic systems and it has become a focal subject in recent years. Almost all of the previous studies on this problem focused on systems with focus–focus type critical points. In this paper, we consider planar piecewise smooth quadratic systems with focus-parabolic type critical points. By using the generalized polar coordinates to compute the corresponding Lyapunov constants, we construct a class of planar piecewise smooth quadratic systems with focus-parabolic type critical points having six limit cycles. Our results improve the results obtained by Coll, Gasull and Prohens in 2001, who constructed a class of such systems with four limit cycles.

2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Feng Li ◽  
Jianlong Qiu

A class of polynomial differential systems with high-order nilpotent critical points are investigated in this paper. Those systems could be changed into systems with an element critical point. The center conditions and bifurcation of limit cycles could be obtained by classical methods. Finally, an example was given; with the help of computer algebra system MATHEMATICA, the first 5 Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The fact that there exist 5 small amplitude limit cycles created from the high-order nilpotent critical point is also proved.


2005 ◽  
Vol 15 (04) ◽  
pp. 1253-1265 ◽  
Author(s):  
M. J. ÁLVAREZ ◽  
A. GASULL

We give a new and short proof of the characterization of monodromic nilpotent critical points. We also calculate the first generalized Lyapunov constants in order to solve the stability problem. We apply the results to several families of planar systems obtaining necessary and sufficient conditions for having a center. Our method also allows us to generate limit cycles from the origin.


1997 ◽  
Vol 49 (2) ◽  
pp. 212-231 ◽  
Author(s):  
B. Coll ◽  
A. Gasull ◽  
R. Prohens

AbstractIn this paper we prove, that under certain hypotheses, the planar differential equation: ˙x = X1(x, y) + X2(x, y), ˙y = Y1(x, y) + Y2(x, y), where (Xi, Yi), i = 1, 2, are quasi-homogeneous vector fields, has at most two limit cycles. The main tools used in the proof are the generalized polar coordinates, introduced by Lyapunov to study the stability of degenerate critical points, and the analysis of the derivatives of the Poincar´e return map. Our results generalize those obtained for polynomial systems with homogeneous non-linearities.


1995 ◽  
Vol 52 (3) ◽  
pp. 461-474 ◽  
Author(s):  
Xianhua Huang ◽  
J.W. Reyn

As a contribution to the solution of Hilbert's 16th problem the question is considered whether in a quadratic system with two nests of limit cycles at least in one nest there exists precisely one limit cycle. An affirmative answer to this question is given for the case that the sum of the multiplicities of the finite critical points in the system is equal to three.


Author(s):  
S. Jelbart ◽  
K. U. Kristiansen ◽  
P. Szmolyan ◽  
M. Wechselberger

AbstractSingular exponential nonlinearities of the form $$e^{h(x)\epsilon ^{-1}}$$ e h ( x ) ϵ - 1 with $$\epsilon >0$$ ϵ > 0 small occur in many different applications. These terms have essential singularities for $$\epsilon =0$$ ϵ = 0 leading to very different behaviour depending on the sign of h. In this paper, we consider two prototypical singularly perturbed oscillators with such exponential nonlinearities. We apply a suitable normalization for both systems such that the $$\epsilon \rightarrow 0$$ ϵ → 0 limit is a piecewise smooth system. The convergence to this nonsmooth system is exponential due to the nonlinearities we study. By working on the two model systems we use a blow-up approach to demonstrate that this exponential convergence can be harmless in some cases while in other scenarios it can lead to further degeneracies. For our second model system, we deal with such degeneracies due to exponentially small terms by extending the space dimension, following the approach in Kristiansen (Nonlinearity 30(5): 2138–2184, 2017), and prove—for both systems—existence of (unique) limit cycles by perturbing away from singular cycles having desirable hyperbolicity properties.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


2008 ◽  
Vol 18 (10) ◽  
pp. 3013-3027 ◽  
Author(s):  
MAOAN HAN ◽  
JIAO JIANG ◽  
HUAIPING ZHU

As we know, Hopf bifurcation is an important part of bifurcation theory of dynamical systems. Almost all known works are concerned with the bifurcation and number of limit cycles near a nondegenerate focus or center. In the present paper, we study a general near-Hamiltonian system on the plane whose unperturbed system has a nilpotent center. We obtain an expansion for the first order Melnikov function near the center together with a computing method for the first coefficients. Using these coefficients, we obtain a new bifurcation theorem concerning the limit cycle bifurcation near the nilpotent center. An interesting application example & a cubic system having five limit cycles & is also presented.


2016 ◽  
Vol 26 (09) ◽  
pp. 1650149 ◽  
Author(s):  
Chaoxiong Du ◽  
Yirong Liu ◽  
Wentao Huang

Our work is concerned with a class of three-dimensional quadratic systems with two symmetric singular points which can yield ten small limit cycles. The method used is singular value method, we obtain the expressions of the first five focal values of the two singular points that the system has. Both singular symmetric points can be fine foci of fifth order at the same time. Moreover, we obtain that each one bifurcates five small limit cycles under a certain coefficient perturbed condition, consequently, at least ten limit cycles can appear by simultaneous Hopf bifurcation.


2003 ◽  
Vol 13 (07) ◽  
pp. 1755-1765 ◽  
Author(s):  
Armengol Gasull ◽  
Joan Torregrosa

We study the center-focus problem as well as the number of limit cycles which bifurcate from a weak focus for several families of planar discontinuous ordinary differential equations. Our computations of the return map near the critical point are performed with a new method based on a suitable decomposition of certain one-forms associated with the expression of the system in polar coordinates. This decomposition simplifies all the expressions involved in the procedure. Finally, we apply our results to study a mathematical model of a mechanical problem, the movement of a ball between two elastic walls.


Author(s):  
T. R. Blows ◽  
N. G. Lloyd

SynopsisTwo-dimensional differential systemsare considered, where P and Q are polynomials. The question of interest is the maximum possible numberof limit cycles of such systems in terms of the degree of P and Q. An algorithm is described for determining a so-called focal basis; this can be implemented on a computer. Estimates can then be obtained for the number of small-amplitude limit cycles. The technique is applied to certain cubic systems; a class of examples with exactly five small-amplitude limit cycles is constructed. Quadratic systems are also considered.


Sign in / Sign up

Export Citation Format

Share Document