A STATISTICAL METHOD FOR DETECTING CYCLES IN DISCRETE DYNAMICAL SYSTEMS

1996 ◽  
Vol 06 (12a) ◽  
pp. 2375-2388 ◽  
Author(s):  
MARKUS LOHMANN ◽  
JAN WENZELBURGER

This paper introduces a statistical method for detecting cycles in discrete time dynamical systems. The continuous state space is replaced by a discrete one consisting of cells. Hashing is used to represent the cells in the computer’s memory. An algorithm for a two-parameter bifurcation analysis is presented which uses the statistical method to detect cycles in the discrete state space. The output of this analysis is a colored cartogram where parameter regions are marked according to the long-term behavior of the system. Moreover, the algorithm allows the computation of basins of attraction of cycles.

1974 ◽  
Vol 11 (04) ◽  
pp. 669-677 ◽  
Author(s):  
D. R. Grey

Results on the behaviour of Markov branching processes as time goes to infinity, hitherto obtained for models which assume a discrete state-space or discrete time or both, are here generalised to a model with both state-space and time continuous. The results are similar but the methods not always so.


1974 ◽  
Vol 11 (4) ◽  
pp. 669-677 ◽  
Author(s):  
D. R. Grey

Results on the behaviour of Markov branching processes as time goes to infinity, hitherto obtained for models which assume a discrete state-space or discrete time or both, are here generalised to a model with both state-space and time continuous. The results are similar but the methods not always so.


Symmetry ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 461 ◽  
Author(s):  
David Luviano-Cruz ◽  
Francesco Garcia-Luna ◽  
Luis Pérez-Domínguez ◽  
S. Gadi

A multi-agent system (MAS) is suitable for addressing tasks in a variety of domains without any programmed behaviors, which makes it ideal for the problems associated with the mobile robots. Reinforcement learning (RL) is a successful approach used in the MASs to acquire new behaviors; most of these select exact Q-values in small discrete state space and action space. This article presents a joint Q-function linearly fuzzified for a MAS’ continuous state space, which overcomes the dimensionality problem. Also, this article gives a proof for the convergence and existence of the solution proposed by the algorithm presented. This article also discusses the numerical simulations and experimental results that were carried out to validate the proposed algorithm.


Author(s):  
Takeshi Tateyama ◽  
◽  
Seiichi Kawata ◽  
Yoshiki Shimomura ◽  
◽  
...  

k-certainty exploration method, an efficient reinforcement learning algorithm, is not applied to environments whose state space is continuous because continuous state space must be changed to discrete state space. Our purpose is to construct discrete semi-Markov decision process (SMDP) models of such environments using growing cell structures to autonomously divide continuous state space then usingk-certainty exploration method to construct SMDP models. Multiagentk-certainty exploration method is then used to improve exploration efficiency. Mobile robot simulation demonstrated our proposal's usefulness and efficiency.


2003 ◽  
Vol 14 (04) ◽  
pp. 583-604 ◽  
Author(s):  
Edmund Clarke ◽  
Ansgar Fehnker ◽  
Zhi Han ◽  
Bruce Krogh ◽  
Joël Ouaknine ◽  
...  

Hybrid dynamic systems include both continuous and discrete state variables. Properties of hybrid systems, which have an infinite state space, can often be verified using ordinary model checking together with a finite-state abstraction. Model checking can be inconclusive, however, in which case the abstraction must be refined. This paper presents a new procedure to perform this refinement operation for abstractions of hybrid systems. Following an approach originally developed for finite-state systems [11, 25], the refinement procedure constructs a new abstraction that eliminates a counterexample generated by the model checker. For hybrid systems, analysis of the counterexample requires the computation of sets of reachable states in the continuous state space. We show how such reachability computations with varying degrees of complexity can be used to refine hybrid system abstractions efficiently. Examples illustrate our counterexample-guided refinement procedure. Experimental results for a prototype implementation indicate significant advantages over existing methods.


2021 ◽  
Vol 3 (6) ◽  
Author(s):  
Ogbonnaya Anicho ◽  
Philip B. Charlesworth ◽  
Gurvinder S. Baicher ◽  
Atulya K. Nagar

AbstractThis work analyses the performance of Reinforcement Learning (RL) versus Swarm Intelligence (SI) for coordinating multiple unmanned High Altitude Platform Stations (HAPS) for communications area coverage. It builds upon previous work which looked at various elements of both algorithms. The main aim of this paper is to address the continuous state-space challenge within this work by using partitioning to manage the high dimensionality problem. This enabled comparing the performance of the classical cases of both RL and SI establishing a baseline for future comparisons of improved versions. From previous work, SI was observed to perform better across various key performance indicators. However, after tuning parameters and empirically choosing suitable partitioning ratio for the RL state space, it was observed that the SI algorithm still maintained superior coordination capability by achieving higher mean overall user coverage (about 20% better than the RL algorithm), in addition to faster convergence rates. Though the RL technique showed better average peak user coverage, the unpredictable coverage dip was a key weakness, making SI a more suitable algorithm within the context of this work.


1997 ◽  
Vol 07 (11) ◽  
pp. 2487-2499 ◽  
Author(s):  
Rabbijah Guder ◽  
Edwin Kreuzer

In order to predict the long term behavior of nonlinear dynamical systems the generalized cell mapping is an efficient and powerful method for numerical analysis. For this reason it is of interest to know under what circumstances dynamical quantities of the generalized cell mapping (like persistent groups, stationary densities, …) reflect the dynamics of the system (attractors, invariant measures, …). In this article we develop such connections between the generalized cell mapping theory and the theory of nonlinear dynamical systems. We prove that the generalized cell mapping is a discretization of the Frobenius–Perron operator. By applying the results obtained for the Frobenius–Perron operator to the generalized cell mapping we outline for some classes of transformations that the stationary densities of the generalized cell mapping converges to an invariant measure of the system. Furthermore, we discuss what kind of measures and attractors can be approximated by this method.


Author(s):  
Panpan Zhang ◽  
Anhui Gu

This paper is devoted to the long-term behavior of nonautonomous random lattice dynamical systems with nonlinear diffusion terms. The nonlinear drift and diffusion terms are not expected to be Lipschitz continuous but satisfy the continuity and growth conditions. We first prove the existence of solutions, and establish the existence of a multi-valued nonautonomous cocycle. We then show the existence and uniqueness of pullback attractors parameterized by sample parameters. Finally, we establish the measurability of this pullback attractor by the method based on the weak upper semicontinuity of the solutions.


NeuroImage ◽  
2017 ◽  
Vol 162 ◽  
pp. 344-352 ◽  
Author(s):  
Jacob C.W. Billings ◽  
Alessio Medda ◽  
Sadia Shakil ◽  
Xiaohong Shen ◽  
Amrit Kashyap ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document