A SIMPLE GEOMETRICAL STRUCTURE UNDERLYING SPEECH SIGNALS OF THE JAPANESE VOWEL /a/

1996 ◽  
Vol 06 (01) ◽  
pp. 149-160 ◽  
Author(s):  
ISAO TOKUDA ◽  
RYUJI TOKUNAGA ◽  
KAZUYUKI AIHARA

We provide several pieces of evidence for possible chaotic dynamics in the irregular behavior of normal speech signals of the Japanese vowel /a/. First, principal component analysis demonstrates that a simple geometric structure underlying the complex speech signal is well reconstructed in a three-dimensional delay-coordinate space. Observations of the reconstructed speech trajectory at multiple cross sections also display speech dynamics with stretching, folding and compressing. Second, Lyapunov spectrum analysis indicates sensitive dependence on initial conditions with a positive Lyapunov exponent for the speech signals of several different speakers. Third, nonlinear modeling analysis with an artificial neural network shows that the nonlinear dynamics of the vowel sound is well reproduced by a deterministic dynamical model.

Volume 3 ◽  
2004 ◽  
Author(s):  
Erik D. Svensson

In this work we computationally characterize fluid mixing in a number of passive microfluidic mixers. Generally, in order to systematically study and characterize mixing in realistic fluid systems we (1) compute the fluid flow in the systems by solving the stationary three-dimensional Navier-Stokes equations or Stokes equations with a finite element method, and (2) compute various measures indicating the degree of mixing based on concepts from dynamical systems theory, i.e., the sensitive dependence on initial conditions and mixing variance.


The understanding of chaos and strange attractors is one of the most exciting areas of mathematics today. It is the question of how the asymptotic behaviour of deterministic systems can exhibit unpredictability and apparent chaos, due to sensitive dependence upon initial conditions, and yet at the same time preserve a coherent global structure. The field represents a remarkable confluence of several different strands of thought. 1. Firstly came the influence of differential topology, giving global geometric insight and emphasis on qualitative properties. By qualitative properties I mean invariants under differentiable changes of coordinates, as opposed to quantitative properties which are invariant only under linear changes of coordinates. To give an example of this influence, I recall a year-long symposium at Warwick in 1979/80, which involved sustained interaction between pure mathematicians and experimentalists, and one of the most striking consequences of that interaction was a transformation in the way that experimentalists now present their data. It is generally in a much more translucent form: instead of merely plotting a frequency spectrum and calling the incomprehensible part ‘noise’, they began to draw computer pictures of underlying three-dimensional strange attractors.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhongping Tao ◽  
Bingli Liu ◽  
Ke Guo ◽  
Na Guo ◽  
Cheng Li ◽  
...  

The identification of primary geochemical haloes can be used to predict mineral resources in deep-seated orebodies through the delineation of element distributions. The Jiama deposits a typical skarn–porphyry Cu–polymetallic deposit in the Gangdese metallogenic belt of Tibet. The Cu–polymetallic skarn, Cu–Mo hornfels, and Mo ± Cu porphyry mineralization there exhibit superimposed geochemical haloes at depth. Three-dimensional (3D) primary geochemical halo modeling was undertaken for the deposit with the aim of providing geochemical data to describe element distributions in 3D space. An overall geochemical zonation of Zn(Pb) → Au → Cu(Ag) → Mo gained from geochemical cross-sections, together with dip-direction skarn zonation Pb–Zn(Cu) → Cu(Au–Ag–Mo) → Mo(Cu) → Cu–Mo(Au–Ag) and vertical zonation Cu–(Pb–Zn) → Mo–(Cu) → Mo–Cu–(Ag–Au–Pb–Zn) → Mo in the #24 exploration profile, indicates potential mineralization at depth. Integrated geochemical anomalies were extracted by kernel principal component analysis, which has the advantage of accommodating nonlinear data. A maximum-entropy model was constructed for deep mineral resources of uncertainty prediction. Three potential deep mineral targets are proposed on the basis of the obtained geochemical information and background.


1996 ◽  
Vol 314 ◽  
pp. 53-103 ◽  
Author(s):  
G. R. Spedding ◽  
F. K. Browand ◽  
A. M. Fincham

Late wakes (Nt > 20) of towed spheres in a stably stratified fluid were analysed in a plane using a reliable, customized DPIV technique that provides sufficient spatial and temporal resolution to cover all important scales of motion in this freely decaying geophysical flow. Systematic experiments were conducted with independent variation of Re ∈ [103, 104] and F ∈ [1, 10] (F ≡ 2U/ND is an internal Froude number based on the buoyancy frequency, N, and the sphere radius, D/2), and for selected {Re, F} pairs above this range.The normalized wake width grows at approximately the same rate as in a three-dimensional unstratified wake, but it becomes narrower, not wider, with decreasing F (i.e. as stratification effects become more important). The centreline defect velocity, on the other hand, reaches values an order of magnitude above those measured for three-dimensional unstratified wakes at equivalent downstream locations. Both observations are argued to be consequences of the very high degree of order and coherence that emerge in the late-wake vortex structures.Streamwise-averaged turbulence quantities, such as the velocity fluctuation magnitude, and mean-square enstrophy, show similar power law behaviour for all Re ≤ 5 × 103, with exponents equal to those expected in three-dimensional axisym-metric turbulent wakes. There is no obvious physical reason why three-dimensional arguments are so successful in such a flow, and at such long evolution times. The scaling collapses none of the cases for Re below 4 – 5 × 103, appearing to establish a minimum Re for a class of self-similar stratified wake flows that evolve from fully turbulent initial conditions.Individual vortex cross-sections appear to be well approximated by Gaussian distributions at all Re, F and Nt studied here. The scaling behaviour of individual vortices mimics that of the statistical, wake-averaged quantities, and differs measurably from a simple two-dimensional viscous diffusion model. The importance of formulating a realistic three-dimensional model is discussed, and some limited steps in this direction point to future useful experiments and modelling efforts.


1986 ◽  
Vol 30 (3) ◽  
pp. 206-210 ◽  
Author(s):  
Gregory F. Zehner

This paper describes the first year's progress in a three–year U.S. Air Force research project aimed at defining and summarizing the shape of the human face. These types of data are needed to enhance the fit and performance of protective equipment designed for the human body. Described are three–dimensional laser measuring systems, subject alignment and coordinate reference systems, angular statistical methods for summarizing points in space, principal component analysis of head cross sections, and data display and computer graphics development.


2019 ◽  
Vol 63 (5) ◽  
pp. 50402-1-50402-9 ◽  
Author(s):  
Ing-Jr Ding ◽  
Chong-Min Ruan

Abstract The acoustic-based automatic speech recognition (ASR) technique has been a matured technique and widely seen to be used in numerous applications. However, acoustic-based ASR will not maintain a standard performance for the disabled group with an abnormal face, that is atypical eye or mouth geometrical characteristics. For governing this problem, this article develops a three-dimensional (3D) sensor lip image based pronunciation recognition system where the 3D sensor is efficiently used to acquire the action variations of the lip shapes of the pronunciation action from a speaker. In this work, two different types of 3D lip features for pronunciation recognition are presented, 3D-(x, y, z) coordinate lip feature and 3D geometry lip feature parameters. For the 3D-(x, y, z) coordinate lip feature design, 18 location points, each of which has 3D-sized coordinates, around the outer and inner lips are properly defined. In the design of 3D geometry lip features, eight types of features considering the geometrical space characteristics of the inner lip are developed. In addition, feature fusion to combine both 3D-(x, y, z) coordinate and 3D geometry lip features is further considered. The presented 3D sensor lip image based feature evaluated the performance and effectiveness using the principal component analysis based classification calculation approach. Experimental results on pronunciation recognition of two different datasets, Mandarin syllables and Mandarin phrases, demonstrate the competitive performance of the presented 3D sensor lip image based pronunciation recognition system.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


Atoms ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 31
Author(s):  
Ghanshyam Purohit

We report triple differential cross-sections (TDCSs) for the electron impact single ionization of tungsten atoms for the ionization taking place from the outer sub shells of tungsten atoms, viz. W (6s), W (5d), W (5p) and W (4f). The study of the electron-induced processes such as ionization, excitation, autoionization from tungsten and its charged states is strongly required to diagnose and model the fusion plasma in magnetic devices such as Tokamaks. Particularly, the cross-section data are important to understand the electron spectroscopy involved in the fusion plasma. In the present study, we report TDCS results for the ionization of W atoms at 200, 500 and 1000 eV projectile energy at different values of scattered electron angles. It was observed that the trends of TDCSs for W (5d) are significantly different from the trends of TDCSs for W (6s), W (5p) and W (4f). It was further observed that the TDCS for W atoms has sensitive dependence on value of momentum transfer and projectile energy.


Sign in / Sign up

Export Citation Format

Share Document