scholarly journals 3D Primary Geochemical Halo Modeling and Its Application to the Ore Prediction of the Jiama Polymetallic Deposit, Tibet, China

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Zhongping Tao ◽  
Bingli Liu ◽  
Ke Guo ◽  
Na Guo ◽  
Cheng Li ◽  
...  

The identification of primary geochemical haloes can be used to predict mineral resources in deep-seated orebodies through the delineation of element distributions. The Jiama deposits a typical skarn–porphyry Cu–polymetallic deposit in the Gangdese metallogenic belt of Tibet. The Cu–polymetallic skarn, Cu–Mo hornfels, and Mo ± Cu porphyry mineralization there exhibit superimposed geochemical haloes at depth. Three-dimensional (3D) primary geochemical halo modeling was undertaken for the deposit with the aim of providing geochemical data to describe element distributions in 3D space. An overall geochemical zonation of Zn(Pb) → Au → Cu(Ag) → Mo gained from geochemical cross-sections, together with dip-direction skarn zonation Pb–Zn(Cu) → Cu(Au–Ag–Mo) → Mo(Cu) → Cu–Mo(Au–Ag) and vertical zonation Cu–(Pb–Zn) → Mo–(Cu) → Mo–Cu–(Ag–Au–Pb–Zn) → Mo in the #24 exploration profile, indicates potential mineralization at depth. Integrated geochemical anomalies were extracted by kernel principal component analysis, which has the advantage of accommodating nonlinear data. A maximum-entropy model was constructed for deep mineral resources of uncertainty prediction. Three potential deep mineral targets are proposed on the basis of the obtained geochemical information and background.

1996 ◽  
Vol 06 (01) ◽  
pp. 149-160 ◽  
Author(s):  
ISAO TOKUDA ◽  
RYUJI TOKUNAGA ◽  
KAZUYUKI AIHARA

We provide several pieces of evidence for possible chaotic dynamics in the irregular behavior of normal speech signals of the Japanese vowel /a/. First, principal component analysis demonstrates that a simple geometric structure underlying the complex speech signal is well reconstructed in a three-dimensional delay-coordinate space. Observations of the reconstructed speech trajectory at multiple cross sections also display speech dynamics with stretching, folding and compressing. Second, Lyapunov spectrum analysis indicates sensitive dependence on initial conditions with a positive Lyapunov exponent for the speech signals of several different speakers. Third, nonlinear modeling analysis with an artificial neural network shows that the nonlinear dynamics of the vowel sound is well reproduced by a deterministic dynamical model.


Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 654
Author(s):  
Domenica Mirauda ◽  
Maria Grazia Russo

In narrow open channels, the three-dimensional nature of the flow and the transport momentum from the sidewalls to the central region cause the maximum longitudinal velocity to occur below the water surface. The entropy model is unable to accurately describe the velocities near the free surface when the dip phenomenon exists. The present paper proposes a new dip-modified entropy law for steady open channel flows, which consists of three additional terms: the first one similar to Coles’ function; the second one linearly proportional to the logarithmic distance from the free surface; and the third one depending on the cubic correction near the maximum velocity. The validity of the new model was tested on a set of laboratory measurements carried out in a straight rectangular flume with smooth boundaries and for different values of water discharge, bottom slope, and aspect ratio. A detailed error analysis showed good agreement with the data measured through the present research and a more accurate prediction of the velocity-dip-position compared with the one evaluated through the original entropy model. In addition, the modified entropy wake law matched very well with other literature data collected in rectangular cross-sections with different flow conditions.


1986 ◽  
Vol 30 (3) ◽  
pp. 206-210 ◽  
Author(s):  
Gregory F. Zehner

This paper describes the first year's progress in a three–year U.S. Air Force research project aimed at defining and summarizing the shape of the human face. These types of data are needed to enhance the fit and performance of protective equipment designed for the human body. Described are three–dimensional laser measuring systems, subject alignment and coordinate reference systems, angular statistical methods for summarizing points in space, principal component analysis of head cross sections, and data display and computer graphics development.


2019 ◽  
Vol 63 (5) ◽  
pp. 50402-1-50402-9 ◽  
Author(s):  
Ing-Jr Ding ◽  
Chong-Min Ruan

Abstract The acoustic-based automatic speech recognition (ASR) technique has been a matured technique and widely seen to be used in numerous applications. However, acoustic-based ASR will not maintain a standard performance for the disabled group with an abnormal face, that is atypical eye or mouth geometrical characteristics. For governing this problem, this article develops a three-dimensional (3D) sensor lip image based pronunciation recognition system where the 3D sensor is efficiently used to acquire the action variations of the lip shapes of the pronunciation action from a speaker. In this work, two different types of 3D lip features for pronunciation recognition are presented, 3D-(x, y, z) coordinate lip feature and 3D geometry lip feature parameters. For the 3D-(x, y, z) coordinate lip feature design, 18 location points, each of which has 3D-sized coordinates, around the outer and inner lips are properly defined. In the design of 3D geometry lip features, eight types of features considering the geometrical space characteristics of the inner lip are developed. In addition, feature fusion to combine both 3D-(x, y, z) coordinate and 3D geometry lip features is further considered. The presented 3D sensor lip image based feature evaluated the performance and effectiveness using the principal component analysis based classification calculation approach. Experimental results on pronunciation recognition of two different datasets, Mandarin syllables and Mandarin phrases, demonstrate the competitive performance of the presented 3D sensor lip image based pronunciation recognition system.


Author(s):  
Matthew J. Genge

Drawings, illustrations, and field sketches play an important role in Earth Science since they are used to record field observations, develop interpretations, and communicate results in reports and scientific publications. Drawing geology in the field furthermore facilitates observation and maximizes the value of fieldwork. Every geologist, whether a student, academic, professional, or amateur enthusiast, will benefit from the ability to draw geological features accurately. This book describes how and what to draw in geology. Essential drawing techniques, together with practical advice in creating high quality diagrams, are described the opening chapters. How to draw different types of geology, including faults, folds, metamorphic rocks, sedimentary rocks, igneous rocks, and fossils, are the subjects of separate chapters, and include descriptions of what are the important features to draw and describe. Different types of sketch, such as drawings of three-dimensional outcrops, landscapes, thin-sections, and hand-specimens of rocks, crystals, and minerals, are discussed. The methods used to create technical diagrams such as geological maps and cross-sections are also covered. Finally, modern techniques in the acquisition and recording of field data, including photogrammetry and aerial surveys, and digital methods of illustration, are the subject of the final chapter of the book. Throughout, worked examples of field sketches and illustrations are provided as well as descriptions of the common mistakes to be avoided.


2021 ◽  
Vol 13 (2) ◽  
pp. 270
Author(s):  
Adrian Doicu ◽  
Dmitry S. Efremenko ◽  
Thomas Trautmann

An algorithm for the retrieval of total column amount of trace gases in a multi-dimensional atmosphere is designed. The algorithm uses (i) certain differential radiance models with internal and external closures as inversion models, (ii) the iteratively regularized Gauss–Newton method as a regularization tool, and (iii) the spherical harmonics discrete ordinate method (SHDOM) as linearized radiative transfer model. For efficiency reasons, SHDOM is equipped with a spectral acceleration approach that combines the correlated k-distribution method with the principal component analysis. The algorithm is used to retrieve the total column amount of nitrogen for two- and three-dimensional cloudy scenes. Although for three-dimensional geometries, the computational time is high, the main concepts of the algorithm are correct and the retrieval results are accurate.


Sign in / Sign up

Export Citation Format

Share Document