CONSTRAINED POINT-SET EMBEDDABILITY OF PLANAR GRAPHS

2010 ◽  
Vol 20 (05) ◽  
pp. 577-600 ◽  
Author(s):  
EMILIO DI GIACOMO ◽  
WALTER DIDIMO ◽  
GIUSEPPE LIOTTA ◽  
HENK MEIJER ◽  
STEPHEN K. WISMATH

This paper starts the investigation of a constrained version of the point-set embed-dability problem. Let G = (V,E) be a planar graph with n vertices, G′ = (V′,E′) a subgraph of G, and S a set of n distinct points in the plane. We study the problem of computing a point-set embedding of G on S subject to the constraint that G′ is drawn with straight-line edges. Different drawing algorithms are presented that guarantee small curve complexity of the resulting drawing, i.e. a small number of bends per edge. It is proved that: • If G′ is an outerplanar graph and S is any set of points in convex position, a point-set embedding of G on S can be computed such that the edges of E\E′ have at most 4 bends each. • If S is any set of points in general position and G′ is a face of G or if it is a simple path, the curve complexity of the edges of E\E′ is at most 8. • If S is in general position and G′ is a set of k disjoint paths, the curve complexity of the edges of E \ E′ is O(2k).

2013 ◽  
Vol 23 (04n05) ◽  
pp. 357-395 ◽  
Author(s):  
THERESE BIEDL ◽  
MARTIN VATSHELLE

In this paper, we study the point-set embeddability problem, i.e., given a planar graph and a set of points, is there a mapping of the vertices to the points such that the resulting straight-line drawing is planar? It was known that this problem is NP-hard if the embedding can be chosen, but becomes polynomial for triangulated graphs of treewidth 3. We show here that in fact it can be answered for all planar graphs with a fixed combinatorial embedding that have constant treewidth and constant face-degree. We prove that as soon as one of the conditions is dropped (i.e., either the treewidth is unbounded or some faces have large degrees), point-set embeddability with a fixed embedding becomes NP-hard. The NP-hardness holds even for a 3-connected planar graph with constant treewidth, triangulated planar graphs, or 2-connected outer-planar graphs. These results also show that the convex point-set embeddability problem (where faces must be convex) is NP-hard, but we prove that it becomes polynomial if the graph has bounded treewidth and bounded maximum degree.


2007 ◽  
Vol 17 (02) ◽  
pp. 139-160 ◽  
Author(s):  
EMILIO DI GIACOMO ◽  
GIUSEPPE LIOTTA

Let G1 and G2 be two planar graphs having some vertices in common. A simultaneous embedding of G1 and G2 is a pair of crossing-free drawings of G1 and G2 such that each vertex in common is represented by the same point in both drawings. In this paper we show that an outerplanar graph and a simple path can be simultaneously embedded with fixed edges such that the edges in common are straight-line segments while the other edges of the outerplanar graph can have at most one bend per edge. We then exploit the technique for outerplanar graphs and paths to study simultaneous embeddings of other pairs of graphs. Namely, we study simultaneous embedding with fixed edges of: (i) two outerplanar graphs sharing a forest of paths and (ii) an outerplanar graph and a cycle.


10.37236/8816 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Hooman R. Dehkordi ◽  
Graham Farr

A graph $G$ is a non-separating planar graph if there is a drawing $D$ of $G$ on the plane such that (1) no two edges cross each other in $D$ and (2) for any cycle $C$ in $D$, any two vertices not in $C$ are on the same side of $C$ in $D$. Non-separating planar graphs are closed under taking minors and are a subclass of planar graphs and a superclass of outerplanar graphs. In this paper, we show that a graph is a non-separating planar graph if and only if it does not contain $K_1 \cup K_4$ or $K_1 \cup K_{2,3}$ or $K_{1,1,3}$ as a minor. Furthermore, we provide a structural characterisation of this class of graphs. More specifically, we show that any maximal non-separating planar graph is either an outerplanar graph or a wheel or it is a graph obtained from the disjoint union of two triangles by adding three vertex-disjoint paths between the two triangles. Lastly, to demonstrate an application of non-separating planar graphs, we use the characterisation of non-separating planar graphs to prove that there are maximal linkless graphs with $3n-3$ edges. Thus, maximal linkless graphs can have significantly fewer edges than maximum linkless graphs; Sachs exhibited linkless graphs with $n$ vertices and $4n-10$ edges (the maximum possible) in 1983.


2010 ◽  
Vol Vol. 12 no. 1 ◽  
Author(s):  
Therese Biedl ◽  
Michal Stern

International audience Edge-intersection graphs of paths in grids are graphs that can be represented such that vertices are paths in a grid and edges between vertices of the graph exist whenever two grid paths share a grid edge. This type of graphs is motivated by applications in conflict resolution of paths in grid networks. In this paper, we continue the study of edge-intersection graphs of paths in a grid, which was initiated by Golumbic, Lipshteyn and Stern. We show that for any k, if the number of bends in each path is restricted to be at most k, then not all graphs can be represented. Then we study some graph classes that can be represented with k-bend paths, for small k. We show that every planar graph has a representation with 5-bend paths, every outerplanar graph has a representation with 3-bend paths, and every planar bipartite graph has a representation with 2-bend paths. We also study line graphs, graphs of bounded pathwidth, and graphs with -regular edge orientations.


10.37236/557 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Micha Sharir ◽  
Adam Sheffer

We study the maximal number of triangulations that a planar set of $n$ points can have, and show that it is at most $30^n$. This new bound is achieved by a careful optimization of the charging scheme of Sharir and Welzl (2006), which has led to the previous best upper bound of $43^n$ for the problem. Moreover, this new bound is useful for bounding the number of other types of planar (i.e., crossing-free) straight-line graphs on a given point set. Specifically, it can be used to derive new upper bounds for the number of planar graphs ($207.84^n$), spanning cycles ($O(68.67^n)$), spanning trees ($O(146.69^n)$), and cycle-free graphs ($O(164.17^n)$).


2010 ◽  
Vol Vol. 12 no. 1 (Graph and Algorithms) ◽  
Author(s):  
Oswin Aichholzer ◽  
Sergio Cabello ◽  
Ruy Fabila-Monroy ◽  
David Flores-Peñaloza ◽  
Thomas Hackl ◽  
...  

Graphs and Algorithms International audience A geometric graph is a graph G = (V, E) drawn in the plane, such that V is a point set in general position and E is a set of straight-line segments whose endpoints belong to V. We study the following extremal problem for geometric graphs: How many arbitrary edges can be removed from a complete geometric graph with n vertices such that the remaining graph still contains a certain non-crossing subgraph. The non-crossing subgraphs that we consider are perfect matchings, subtrees of a given size, and triangulations. In each case, we obtain tight bounds on the maximum number of removable edges.


2013 ◽  
Vol 22 (6) ◽  
pp. 935-954 ◽  
Author(s):  
MICHA SHARIR ◽  
ADAM SHEFFER

We study cross-graph charging schemes for graphs drawn in the plane. These are charging schemes where charge is moved across vertices of different graphs. Such methods have recently been used to obtain various properties of triangulations that are embedded in a fixed set of points in the plane. We generalize this method to obtain results for various other types of graphs that are embedded in the plane. Specifically, we obtain a new bound ofO*(187.53N) (where theO*(⋅) notation hides polynomial factors) for the maximum number of crossing-free straight-edge graphs that can be embedded in any specific set ofNpoints in the plane (improving upon the previous best upper bound 207.85Nin Hoffmann, Schulz, Sharir, Sheffer, Tóth and Welzl [14]). We also derive upper bounds for numbers of several other types of plane graphs (such as connected and bi-connected plane graphs), and obtain various bounds on the expected vertex-degrees in graphs that are uniformly chosen from the set of all crossing-free straight-edge graphs that can be embedded in a specific point set.We then apply the cross-graph charging-scheme method to graphs that allow certain types of crossings. Specifically, we consider graphs with no set ofkpairwise crossing edges (more commonly known ask-quasi-planar graphs). Fork=3 andk=4, we prove that, for any setSofNpoints in the plane, the number of graphs that have a straight-edgek-quasi-planar embedding overSis only exponential inN.


1999 ◽  
Vol 8 (3) ◽  
pp. 293-299 ◽  
Author(s):  
R. šKREKOVSKI

A graph G is m-choosable with impropriety d, or simply (m, d)*-choosable, if for every list assignment L, where [mid ]L(v)[mid ][ges ]m for every v∈V(G), there exists an L-colouring of G such that each vertex of G has at most d neighbours coloured with the same colour as itself. We show that every planar graph is (3, 2)*-choosable and every outerplanar graph is (2, 2)*-choosable. We also propose some interesting problems about this colouring.


10.37236/7291 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
António Girão ◽  
Gábor Mészáros ◽  
Kamil Popielarz ◽  
Richard Snyder

A graph is path-pairable if for any pairing of its vertices there exist edge-disjoint paths joining the vertices in each pair. We investigate the behaviour of the maximum degree in path-pairable planar graphs. We show that any $n$-vertex path-pairable planar graph must contain a vertex of degree linear in $n$. Our result generalizes to graphs embeddable on a surface of finite genus.  


1968 ◽  
Vol 11 (2) ◽  
pp. 203-211 ◽  
Author(s):  
Stephen Hedetniemi

In 1879 Kempe [5] presented what has become the most famous of all incorrect proofs of the Four Colour Conjecture, but even though his proof was erroneous his method has become quite useful. In 1890 Heawood [4] was able to modify Kempe's method to establish the Five Colour Theorem for planar graphs. In this article we show that other modifications of Kempe's method can be made which enable one to establish more results about planar graphs. By this process we obtain upper bounds for several parameters which involve partitioning the point set of a graph. In particular, we show that the point set of any planar graph can be partitioned into four or less subsets such that the subgraph induced by each subset is either disconnected or trivial (consists of a single point). We also show that the point set of any planar graph can be partitioned into three or less subsets such that the subgraph induced by each subset contains no cycles.


Sign in / Sign up

Export Citation Format

Share Document