OPTIMUM GUARD COVERS AND m-WATCHMEN ROUTES FOR RESTRICTED POLYGONS

1993 ◽  
Vol 03 (01) ◽  
pp. 85-105 ◽  
Author(s):  
SVANTE CARLSSON ◽  
BENGT J. NILSSON ◽  
SIMEON NTAFOS

A watchman, in the terminology of art galleries, is a mobile guard. We consider several watchman and guard problems for different classes of polygons. We introduce the notion of vision spans along a path or route which provide a natural connection between the art gallery problem, the m-watchmen routes problem and the watchman route problem. We prove that finding the minimum number of vision points, i.e., static guards, along a shortest watchman route is NP-hard. We provide a linear time algorithm to compute the best set of static guards in a histogram polygon. The m-watchmen routes problem, minimize total length of routes for m watchmen, is NP-hard for simple polygons. We give a Θ(n3+n2m2)-time algorithm to compute the best set of m watchmen in a histogram.

2017 ◽  
Vol 27 (03) ◽  
pp. 159-176
Author(s):  
Helmut Alt ◽  
Sergio Cabello ◽  
Panos Giannopoulos ◽  
Christian Knauer

We study the complexity of the following cell connection problems in segment arrangements. Given a set of straight-line segments in the plane and two points [Formula: see text] and [Formula: see text] in different cells of the induced arrangement: [(i)] compute the minimum number of segments one needs to remove so that there is a path connecting [Formula: see text] to [Formula: see text] that does not intersect any of the remaining segments; [(ii)] compute the minimum number of segments one needs to remove so that the arrangement induced by the remaining segments has a single cell. We show that problems (i) and (ii) are NP-hard and discuss some special, tractable cases. Most notably, we provide a near-linear-time algorithm for a variant of problem (i) where the path connecting [Formula: see text] to [Formula: see text] must stay inside a given polygon [Formula: see text] with a constant number of holes, the segments are contained in [Formula: see text], and the endpoints of the segments are on the boundary of [Formula: see text]. The approach for this latter result uses homotopy of paths to group the segments into clusters with the property that either all segments in a cluster or none participate in an optimal solution.


Author(s):  
Mahavir Banukumar

A book consists of a line in the 3-dimensional space, called the spine, and a number of pages, each a half-plane with the spine as boundary. A book embedding (p, r) of a graph consists of a linear ordering of p, of vertices, called the spine ordering, along the spine of a book and an assignment r, of edges to pages so that edges assigned to the same page can be drawn on that page without crossing. That is, we cannot find vertices u, v, x, y with p(u) < p(x) < p(v) < p(y), yet the edges uv and xy are assigned to the same page, that is r(uv) = r(xy). The book thickness or page number of a graph G is the minimum number of pages in required to embed G in a book. In this paper we consider the Sun Graph or the Trampoline graph and obtain the printing cycle for embedding the Sun Graph in a single page. We also give a linear time algorithm for such an embedding.


2019 ◽  
Vol 19 (01) ◽  
pp. 1940004
Author(s):  
BOTING YANG ◽  
RUNTAO ZHANG ◽  
YI CAO ◽  
FARONG ZHONG

In this paper, we consider the problem of finding the minimum number of searchers to sweep networks/graphs with special topological structures. Such a number is called the search number. We first study graphs, which contain only one cycle, and present a linear time algorithm to compute the vertex separation and the optimal layout of such graphs; by a linear-time transformation, we can find the search number of this kind of graphs in linear time. We also investigate graphs, in which every vertex lies on at most one cycle and each cycle contains at most three vertices of degree more than two, and we propose a linear time algorithm to compute their search number and optimal search strategy. We prove explicit formulas for the search number of the graphs obtained from complete k-ary trees by replacing vertices by cycles. We also present some results on approximation algorithms.


2014 ◽  
Vol 24 (03) ◽  
pp. 225-236 ◽  
Author(s):  
DAVID KIRKPATRICK ◽  
BOTING YANG ◽  
SANDRA ZILLES

Given an arrangement A of n sensors and two points s and t in the plane, the barrier resilience of A with respect to s and t is the minimum number of sensors whose removal permits a path from s to t such that the path does not intersect the coverage region of any sensor in A. When the surveillance domain is the entire plane and sensor coverage regions are unit line segments, even with restricted orientations, the problem of determining the barrier resilience is known to be NP-hard. On the other hand, if sensor coverage regions are arbitrary lines, the problem has a trivial linear time solution. In this paper, we study the case where each sensor coverage region is an arbitrary ray, and give an O(n2m) time algorithm for computing the barrier resilience when there are m ⩾ 1 sensor intersections.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1592
Author(s):  
Iztok Peterin ◽  
Gabriel Semanišin

A shortest path P of a graph G is maximal if P is not contained as a subpath in any other shortest path. A set S⊆V(G) is a maximal shortest paths cover if every maximal shortest path of G contains a vertex of S. The minimum cardinality of a maximal shortest paths cover is called the maximal shortest paths cover number and is denoted by ξ(G). We show that it is NP-hard to determine ξ(G). We establish a connection between ξ(G) and several other graph parameters. We present a linear time algorithm that computes exact value for ξ(T) of a tree T.


2021 ◽  
Vol 37 (2) ◽  
pp. 621-642
Author(s):  
Hannah Alpert ◽  
Érika Roldán

AbstractHow many chess rooks or queens does it take to guard all squares of a given polyomino, the union of square tiles from a square grid? This question is a version of the art gallery problem in which the guards can “see” whichever squares the rook or queen attacks. We show that $$\lfloor {\frac{n}{2}} \rfloor $$ ⌊ n 2 ⌋ rooks or $$\lfloor {\frac{n}{3}} \rfloor $$ ⌊ n 3 ⌋ queens are sufficient and sometimes necessary to guard a polyomino with n tiles. We then prove that finding the minimum number of rooks or queens needed to guard a polyomino is NP-hard. These results also apply to d-dimensional rooks and queens on d-dimensional polycubes. Finally, we use bipartite matching theorems to describe sets of non-attacking rooks on polyominoes.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950066
Author(s):  
S. Arumugam ◽  
K. Raja Chandrasekar

A dominator coloring (respectively, total dominator coloring) of a graph [Formula: see text] is a proper coloring [Formula: see text] of [Formula: see text] such that each closed neighborhood (respectively, open neighborhood) of every vertex of [Formula: see text] contains a color class of [Formula: see text] The minimum number of colors required for a dominator coloring (respectively, total dominator coloring) of [Formula: see text] is called the dominator chromatic number (respectively, total dominator chromatic number) of [Formula: see text] and is denoted by [Formula: see text] (respectively, [Formula: see text]). In this paper, we prove that the dominator coloring problem and the total dominator coloring problem are solvable in linear time for trestled graphs.


Author(s):  
MATTHIAS MÜLLER-HANNEMANN ◽  
KARSTEN WEIHE

We present a linear–time algorithm that decomposes a convex polygon conformally into a minimum number of strictly convex quadrilaterals. Moreover, we characterize the polygons that can be decomposed without additional vertices inside the polygon, and we present a linear–time algorithm for such decompositions, too. As an application, we consider the problem of constructing a minimum conformal refinement of a mesh in the three–dimensional space, which approximates the surface of a workpiece. We prove that this problem is strongly [Formula: see text] –hard, and we present a linear-time algorithm with a constant approximation ratio of four.


Author(s):  
Mahavir Banukumar

A book consists of a line in the 3-dimensional space, called the spine, and a number of pages, each a half-plane with the spine as boundary. A book embedding (π,ρ) of a graph consists of a linear ordering of π, of vertices, called the spine ordering, along the spine of a book and an assignment ρ, of edges to pages so that edges assigned to the same page can be drawn on that page without crossing. That is, we cannot find vertices u, v, x, y with π(u) < π(x) < π(v) < π(y), yet the edges uv and xy are assigned to the same page, that is ρ(uv) = ρ(xy). The book thickness or page number of a graph G is the minimum number of pages in required to embed G in a book. In this paper we consider the extended grid and prove that the 1xn extended grid can be embedded in two pages. We also give a linear time algorithm to embed the 1xn extended grid in two pages.


Sign in / Sign up

Export Citation Format

Share Document