scholarly journals COMPATIBILITY JSJ DECOMPOSITION OF GRAPHS OF FREE ABELIAN GROUPS

2013 ◽  
Vol 23 (08) ◽  
pp. 1837-1880
Author(s):  
BENJAMIN BEEKER

A group G is a v GBS group if it admits a decomposition as a finite graph of groups with all edge and vertex groups finitely generated and free abelian. We describe the compatibility JSJ decomposition over abelian groups. We prove that in general this decomposition is not algorithmically computable.

2018 ◽  
Vol 30 (4) ◽  
pp. 877-885
Author(s):  
Luise-Charlotte Kappe ◽  
Patrizia Longobardi ◽  
Mercede Maj

Abstract It is well known that the set of commutators in a group usually does not form a subgroup. A similar phenomenon occurs for the set of autocommutators. There exists a group of order 64 and nilpotency class 2, where the set of autocommutators does not form a subgroup, and this group is of minimal order with this property. However, for finite abelian groups, the set of autocommutators is always a subgroup. We will show in this paper that this is no longer true for infinite abelian groups. We characterize finitely generated infinite abelian groups in which the set of autocommutators does not form a subgroup and show that in an infinite abelian torsion group the set of commutators is a subgroup. Lastly, we investigate torsion-free abelian groups with finite automorphism group and we study whether the set of autocommutators forms a subgroup in those groups.


Author(s):  
A. R. Shastri

AbstractIf G, H and B are groups such that G × B ≃ H × B, G/[G, G]. Z(G) is free abelian and B is finitely generated abelian, then G ≃ H. The equivalence classes of triples (Vξ,A) where Vand A are finitely generated free abelian groups and ξ: V⊗ V → A is a bilinear form constitute a semigroup B undera natural external orthogonal sum. This semigroup B is cancellative. A cancellation theorem for class 2 nilpotent groups is deduced.


2015 ◽  
Vol 59 (1) ◽  
pp. 143-168 ◽  
Author(s):  
S. Kaliszewski ◽  
Alex Kumjian ◽  
John Quigg ◽  
Aidan Sims

AbstractWe investigate topological realizations of higher-rank graphs. We show that the fundamental group of a higher-rank graph coincides with the fundamental group of its topological realization. We also show that topological realization of higher-rank graphs is a functor and that for each higher-rank graphΛ, this functor determines a category equivalence between the category of coverings ofΛand the category of coverings of its topological realization. We discuss how topological realization relates to two standard constructions fork-graphs: projective limits and crossed products by finitely generated free abelian groups.


1994 ◽  
Vol 37 (4) ◽  
pp. 433-436 ◽  
Author(s):  
R. B. J. T. Allenby

AbstractWe show that, even under very favourable hypotheses, a polygonal product of finitely generated torsion free nilpotent groups amalgamating infinite cyclic subgroups is, in general, not residually finite, thus answering negatively a question of C. Y. Tang. A second example shows similar kinds of limitations apply even when the factors of the product are free abelian groups.


2018 ◽  
Vol 28 (07) ◽  
pp. 1129-1162
Author(s):  
Jordi Delgado ◽  
Enric Ventura ◽  
Alexander Zakharov

We solve the subgroup intersection problem (SIP) for any RAAG [Formula: see text] of Droms type (i.e. with defining graph not containing induced squares or paths of length [Formula: see text]): there is an algorithm which, given finite sets of generators for two subgroups [Formula: see text], decides whether [Formula: see text] is finitely generated or not, and, in the affirmative case, it computes a set of generators for [Formula: see text]. Taking advantage of the recursive characterization of Droms groups, the proof consists in separately showing that the solvability of SIP passes through free products, and through direct products with free-abelian groups. We note that most of RAAGs are not Howson, and many (e.g. [Formula: see text]) even have unsolvable SIP.


1994 ◽  
Vol 50 (2) ◽  
pp. 177-195 ◽  
Author(s):  
Theodore G. Faticoni

We use a variation on a construction due to Corner 1965 to construct (Abelian) groups A that are torsion as modules over the ring End (A) of group endomorphisms of A. Some applications include the failure of the Baer-Kaplansky Theorem for Z[X]. There is a countable reduced torsion-free group A such that IA = A for each maximal ideal I in the countable commutative Noetherian integral domain, End (A). Also, there is a countable integral domain R and a countable. R-module A such that (1) R = End(A), (2) T0 ⊗RA ≠ 0 for each nonzero finitely generated (respectively finitely presented) R-module T0, but (3) T ⊗RA = 0 for some nonzero (respectively nonzero finitely generated). R-module T.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2021 ◽  
pp. 1-36
Author(s):  
ARIE LEVIT ◽  
ALEXANDER LUBOTZKY

Abstract We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.


Author(s):  
Fysal Hasani ◽  
Fatemeh Karimi ◽  
Alireza Najafizadeh ◽  
Yousef Sadeghi

AbstractThe square subgroup of an abelian group


Sign in / Sign up

Export Citation Format

Share Document