scholarly journals Parameter-robust Uzawa-type iterative methods for double saddle point problems arising in Biot’s consolidation and multiple-network poroelasticity models

2020 ◽  
Vol 30 (13) ◽  
pp. 2523-2555
Author(s):  
Qingguo Hong ◽  
Johannes Kraus ◽  
Maria Lymbery ◽  
Fadi Philo

This work is concerned with the iterative solution of systems of quasi-static multiple-network poroelasticity equations describing flow in elastic porous media that is permeated by single or multiple fluid networks. Here, the focus is on a three-field formulation of the problem in which the displacement field of the elastic matrix and, additionally, one velocity field and one pressure field for each of the [Formula: see text] fluid networks are the unknown physical quantities. Generalizing Biot’s model of consolidation, which is obtained for [Formula: see text], the MPET equations for [Formula: see text] exhibit a double saddle point structure. The proposed approach is based on a framework of augmenting and splitting this three-by-three block system in such a way that the resulting block Gauss–Seidel preconditioner defines a fully decoupled iterative scheme for the flux-, pressure-, and displacement fields. In this manner, one obtains an augmented Lagrangian Uzawa-type method, the analysis of which is the main contribution of this work. The parameter-robust uniform linear convergence of this fixed-point iteration is proved by showing that its rate of contraction is strictly less than one independent of all physical and discretization parameters. The theoretical results are confirmed by a series of numerical tests that compare the new fully decoupled scheme to the very popular partially decoupled fixed-stress split iterative method, which decouples only flow — the flux and pressure fields remain coupled in this case — from the mechanics problem. We further test the performance of the block-triangular preconditioner defining the new scheme when used to accelerate the generalized minimal residual method (GMRES) algorithm.

Foundations ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 114-127
Author(s):  
Samundra Regmi ◽  
Christopher I. Argyros ◽  
Ioannis K. Argyros ◽  
Santhosh George

The celebrated Traub’s method involving Banach space-defined operators is extended. The main feature in this study involves the determination of a subset of the original domain that also contains the Traub iterates. In the smaller domain, the Lipschitz constants are smaller too. Hence, a finer analysis is developed without the usage of additional conditions. This methodology applies to other methods. The examples justify the theoretical results.


Mathematics ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Santiago Artidiello ◽  
Alicia Cordero ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

A secant-type method is designed for approximating the inverse and some generalized inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us an approximation of the inverse and, when the matrix is singular, an approximation of the Moore–Penrose inverse and Drazin inverse are obtained. The convergence and the order of convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical results and to compare the performance of our method with other known ones. With these results, the iterative methods with memory appear for the first time for estimating the solution of a nonlinear matrix equations.


Author(s):  
Iraj Saeedpanah ◽  
M. Shayanfar ◽  
E. Jabbari ◽  
Mohammad Haji Mohammadi

Free surface flows are frequently encountered in hydraulic engineering problems including water jets, weirs and around gates. An iterative solution to the incompressible two-dimensional vertical steady Navier-Stokes equations, comprising momentum and continuity equations, is used to solve for the priori unknown free surface, the velocity and the pressure fields. The entire water body is covered by a unstructured finite element grid which is locally refined. The dynamic boundary condition is imposed for the free surface where the pressure vanishes. This procedure is done continuously until the normal velocities components vanish. To overcome numerical errors and oscillations encountering in convection terms, the SUPG (streamline upwinding Petrov-Galerkin) method is applied. The solution method is tested for different discharges onto a standard spillway geometries. The results shows good agreement with available experimental data.


2014 ◽  
Vol 11 (05) ◽  
pp. 1350078 ◽  
Author(s):  
XIAOFENG WANG ◽  
TIE ZHANG

In this paper, we present some three-point Newton-type iterative methods without memory for solving nonlinear equations by using undetermined coefficients method. The order of convergence of the new methods without memory is eight requiring the evaluations of three functions and one first-order derivative in per full iteration. Hence, the new methods are optimal according to Kung and Traubs conjecture. Based on the presented methods without memory, we present two families of Newton-type iterative methods with memory. Further accelerations of convergence speed are obtained by using a self-accelerating parameter. This self-accelerating parameter is calculated by the Hermite interpolating polynomial and is applied to improve the order of convergence of the Newton-type method. The corresponding R-order of convergence is increased from 8 to 9, [Formula: see text] and 10. The increase of convergence order is attained without any additional calculations so that the two families of the methods with memory possess a very high computational efficiency. Numerical examples are demonstrated to confirm theoretical results.


Author(s):  
Yuanyuan Liu ◽  
Fanhua Shang ◽  
Licheng Jiao

Recently, research on variance reduced incremental gradient descent methods (e.g., SAGA) has made exciting progress (e.g., linear convergence for strongly convex (SC) problems). However, existing accelerated methods (e.g., point-SAGA) suffer from drawbacks such as inflexibility. In this paper, we design a novel and simple momentum to accelerate the classical SAGA algorithm, and propose a direct accelerated incremental gradient descent algorithm. In particular, our theoretical result shows that our algorithm attains a best known oracle complexity for strongly convex problems and an improved convergence rate for the case of n>=L/\mu. We also give experimental results justifying our theoretical results and showing the effectiveness of our algorithm.


2021 ◽  
Vol 4 (1) ◽  
pp. 34-43
Author(s):  
Samundra Regmi ◽  
◽  
Ioannis K. Argyros ◽  
Santhosh George ◽  
◽  
...  

In this study a convergence analysis for a fast multi-step Chebyshe-Halley-type method for solving nonlinear equations involving Banach space valued operator is presented. We introduce a more precise convergence region containing the iterates leading to tighter Lipschitz constants and functions. This way advantages are obtained in both the local as well as the semi-local convergence case under the same computational cost such as: extended convergence domain, tighter error bounds on the distances involved and a more precise information on the location of the solution. The new technique can be used to extend the applicability of other iterative methods. The numerical examples further validate the theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-15
Author(s):  
Lifeng Wei ◽  
Zhen Wu

Under the notable Issacs's condition on the Hamiltonian, the existence results of a saddle point are obtained for the stochastic recursive zero-sum differential game and mixed differential game problem, that is, the agents can also decide the optimal stopping time. The main tools are backward stochastic differential equations (BSDEs) and double-barrier reflected BSDEs. As the motivation and application background, when loan interest rate is higher than the deposit one, the American game option pricing problem can be formulated to stochastic recursive mixed zero-sum differential game problem. One example with explicit optimal solution of the saddle point is also given to illustrate the theoretical results.


1980 ◽  
Vol 24 (1) ◽  
pp. 103-120 ◽  
Author(s):  
C. D. Mathers

The structure of transverse MHD shock waves in an initially partly ionized plasma is studied using a three-fluid model with collisional transport coefficients. This model includes the effects of non-equilibrium ionization and of ion velocity slip. A closed set of structure equations is obtained and it is shown that they have a saddle-point – saddle-point topology which prohibits direct integration. In distinction from previous MHD shock structure studies, it is not possible to reduce the number of variables in a realistic manner to allow direct integration, nor is it possible to use the method of matched asymptotic expansions. An iterative solution method is presented in this paper, based on a detailed analysis of the integral curve topology.


Sign in / Sign up

Export Citation Format

Share Document