MOTION OF CHARGED PARTICLES AROUND A FIVE-DIMENSIONAL ROTATING MAGNETIZED BLACK HOLE

2007 ◽  
Vol 16 (08) ◽  
pp. 1369-1379
Author(s):  
R. KAYA

We study the effect of an external magnetic field on the stability of circular motion of charged particles in the equatorial plane of a five-dimensional rotating black hole. Using the Hamilton–Jacobi formalism, we derive the effective potential for the radial motion of test particles around a five-dimensional magnetized Myers–Perry black hole. We show that there exist stable circular orbits in equatorial planes in the background of this metric.

Author(s):  
Muhammad Rizwan ◽  
Tooba Feroze

In this paper, we study the effects of the external magnetic field on the Lense–Thirring (LT) precession of a test gyroscope attached to an observer in magnetized black hole spacetime. For this, we consider a Kerr–Newman black hole embedded in the external magnetic field. The LT precession of a test gyroscope diverges near the ergosurface and remains finite everywhere outside the ergosurface. It is seen that by increasing the external magnetic field, the LT precession frequency in the region of large [Formula: see text] decreases as [Formula: see text] increases, while the precession frequency in the region of small [Formula: see text] increases as [Formula: see text] increases, whereas it increases with increasing the charge of the black hole. The LT precession of a test gyroscope attached to observers moving along the directions close to the polar axis is greater than that of the observer moving in the equatorial plane.


2011 ◽  
Vol 26 (06) ◽  
pp. 399-408 ◽  
Author(s):  
O. G. RAHIMOV

We investigate the motion of a magnetized particle orbiting around a black hole in braneworld immersed in asymptotically uniform magnetic field. The influence of brane parameter on effective potential of the radial motion of magnetized spinning particle around the braneworld black hole using Hamilton–Jacobi formalism is studied. It is found that circular orbits for photons and slowly moving particles may become stable near r = 3M. It was argued that the radii of the innermost stable circular orbits are sensitive on the change of brane parameter. Similar discussion without Weil parameter has been considered by de Felice et al. in Refs. 1 and 2.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
Bakhtiyor Narzilloev ◽  
Javlon Rayimbaev ◽  
Ahmadjon Abdujabbarov ◽  
Bobomurat Ahmedov ◽  
Cosimo Bambi

AbstractIn the present paper, we have investigated the motion of charged particles together with magnetic dipoles to determine how well the spacetime deviation parameter $$\epsilon $$ ϵ and external uniform magnetic field can mimic the spin of a rotating Kerr black hole. Investigation of charged particle motion has shown that the deviation parameter $$\epsilon $$ ϵ in the absence of an external magnetic fields can mimic the rotation parameter of the Kerr spacetime up to $$a/M \approx 0.5$$ a / M ≈ 0.5 . The combination of an external magnetic field and deviation parameter can do even a better job mimicking the rotation parameter up to $$a/M\simeq 0.93$$ a / M ≃ 0.93 , which corresponds to the rapidly rotating case. Study of the dynamics of the magnetic dipoles around quasi-Schwarzschild black holes in the external magnetic field has shown that there are degeneracy values of the ISCO radius of test particles at $$\epsilon _{cr}>\epsilon \ge 0.35$$ ϵ cr > ϵ ≥ 0.35 which may lead to two different values of the innermost stable circular orbit (ISCO) radius. When the deviation parameter is in the range of $$\epsilon \in (-1,\ 1)$$ ϵ ∈ ( - 1 , 1 ) , it can mimic the spin of a rotating Kerr black hole in the range $$a/M \in (0.0537, \ 0.3952)$$ a / M ∈ ( 0.0537 , 0.3952 ) for magnetic dipoles with values of the magnetic coupling parameter $$\beta \in [-0.25,\ 0.25]$$ β ∈ [ - 0.25 , 0.25 ] in corotating orbits.


2020 ◽  
Vol 35 (23) ◽  
pp. 2050130
Author(s):  
Israr Ali Khan ◽  
Amir Sultan Khan ◽  
Saeed Islam

The study of particle dynamics in the vicinity of a black hole environed by dark energy and magnetic field has attracted researchers for their importance in astrophysics and cosmology. In this paper, we study the dynamics of neutral and charged particles in the vicinity of de Sitter–Schwarzschild black hole (DS–Sch-BH) surrounded by quintessence. The effect of the DS part is explored by virtue of effective potential, effective force, and escape velocity of the particle (neutral and charged) moving around DS–Sch-BH. Finally, a comparative study is also investigated.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Bushra Majeed ◽  
Mubasher Jamil ◽  
Saqib Hussain

Considering the geometry of Reissner-Nordström (RN) black hole immersed in magnetic field, we have studied the dynamics of neutral and charged particles. A collision of particles in the inner stable circular orbit is considered and the conditions for the escape of colliding particles from the vicinity of black hole are given. The trajectories of the escaping particle are discussed. Also, the velocity required for this escape is calculated. It is observed that there is more than one stable region if magnetic field is present in the accretion disk of black hole, so the stability of ISCO increases in the presence of magnetic field. Effect of magnetic field on the angular motion of neutral and charged particles is observed graphically.


2019 ◽  
Vol 34 (32) ◽  
pp. 1950208 ◽  
Author(s):  
G. Abbas ◽  
N. Yousaf ◽  
M. Zubair ◽  
Rabia Saleem

In this paper, we have explored the behavior of dynamics of neutral test particles near the brane-world black hole (BH). We have discussed the stability/instability near the circular orbits with the help of extremal and nonextremal BH. In this consideration, we investigate the last stable circular orbit [Formula: see text] that decreases with the increase of black hole parameters and concluded that the circular orbits are stable at [Formula: see text]. The effective potential vanishes at horizon in extremal BH. In case of nonextremal BH, the angular momentum decreases, whereas energy increases with the increase in dark parameter [Formula: see text]. Moreover, we find the conditions for the naked singularity and also express the effective potential that increases with the increase of angular momentum. Finally, the center-of-mass energy (CME) is constructed by the collision of particles in the vicinity of brane-world black hole and observed that the CME decreases with the increase of black hole parameters.


2007 ◽  
Vol 22 (06) ◽  
pp. 1265-1278
Author(s):  
ABOUZEID M. SHALABY ◽  
S. T. EL-BASYOUNY

We established a resummed formula for the effective potential of [Formula: see text] scalar field theory that can mimic the true effective potential not only at the critical region but also at any point in the coupling space. We first extend the effective potential from the oscillator representation method, perturbatively, up to g3 order. We supplement perturbations by the use of a resummation algorithm, originally due to Kleinert, Thoms and Janke, which has the privilege of using the strong coupling as well as the large coupling behaviors rather than the conventional resummation techniques which use only the large order behavior. Accordingly, although the perturbation series available is up to g3 order, we found a good agreement between our resummed effective potential and the well-known features from constructive field theory. The resummed effective potential agrees well with the constructive field theory results concerning existing and order of phase transition in the absence of an external magnetic field. In the presence of the external magnetic field, as in magnetic systems, the effective potential shows nonexistence of phase transition and gives the behavior of the vacuum condensate as a monotonic increasing function of J, in complete agreement with constructive field theory methods.


1980 ◽  
Vol 24 (3) ◽  
pp. 479-482 ◽  
Author(s):  
K. Bhimsen ◽  
Shivamoggi ◽  
Mahinder ◽  
S. Uberoi

Convective instability of a plasma slab (contained between two metal walls) subject to a longitudinal external magnetic field is studied. The results show that (i) increase in the ionization rate Z causes a reduction in the stability of the plasma; (ii) the instability persists in the limit k ⇒ 0.


Sign in / Sign up

Export Citation Format

Share Document