scholarly journals SHEAR VISCOSITY OF YANG–MILLS THEORY IN THE CONFINEMENT PHASE

2007 ◽  
Vol 16 (07) ◽  
pp. 1249-1260
Author(s):  
IVER BREVIK ◽  
KAZUO GHOROKU

In terms of a simple holographic model, we study the absorption cross-section and the shear viscosity of a pure Yang–Mills field at low temperature where the system is in the confinement phase. Then we expect that the glueball states are the dominant modes in this phase. In our holographic model, an infrared cut-off rm is introduced as a parameter which fixes the lowest mass of the glueball. As a result, the critical temperature of gluon confinement is estimated to be Tc ~ 127 MeV . For T < Tc, we find that both the absorption cross-section and the shear viscosity are independent of the temperature. Their values are frozen at the values corresponding to the critical point, for 0 < T < Tc. We discuss this behavior by considering the glueball mass and its temperature dependence.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Huriye Gürsel ◽  
İzzet Sakallı

We studied in detail the propagation of a massive tachyonic scalar field in the background of a five-dimensional (5D) Einstein–Yang–Mills–Born–Infeld–dilaton black string: the massive Klein–Gordon equation was solved, exactly. Next we obtained complete analytical expressions for the greybody factor, absorption cross section, and decay rate for the tachyonic scalar field in the geometry under consideration. The behaviors of the obtained results are graphically represented for different values of the theory’s free parameters. We also discuss why tachyons should be used instead of ordinary particles for the analytical derivation of the greybody factor of the dilatonic 5D black string.


AIP Advances ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 025120
Author(s):  
C. Stanford ◽  
M. J. Wilson ◽  
B. Cabrera ◽  
M. Diamond ◽  
N. A. Kurinsky ◽  
...  

2021 ◽  
pp. 000370282199044
Author(s):  
Wubin Weng ◽  
Shen Li ◽  
Marcus Aldén ◽  
Zhongshan Li

Ammonia (NH3) is regarded as an important nitrogen oxides (NOx) precursor and also as an effective reductant for NOx removal in energy utilization through combustion, and it has recently become an attractive non-carbon alternative fuel. To have a better understanding of thermochemical properties of NH3, accurate in situ detection of NH3 in high temperature environments is desirable. Ultraviolet (UV) absorption spectroscopy is a feasible technique. To achieve quantitative measurements, spectrally resolved UV absorption cross-sections of NH3 in hot gas environments at different temperatures from 295 K to 590 K were experimentally measured for the first time. Based on the experimental results, vibrational constants of NH3 were determined and used for the calculation of the absorption cross-section of NH3 at high temperatures above 590 K using the PGOPHER software. The investigated UV spectra covered the range of wavelengths from 190 nm to 230 nm, where spectral structures of the [Formula: see text] transition of NH3 in the umbrella bending mode, v2, were recognized. The absorption cross-section was found to decrease at higher temperatures. For example, the absorption cross-section peak of the (6, 0) vibrational band of NH3 decreases from ∼2 × 10−17 to ∼0.5 × 10−17 cm2/molecule with the increase of temperature from 295 K to 1570 K. Using the obtained absorption cross-section, in situ nonintrusive quantification of NH3 in different hot gas environments was achieved with a detection limit varying from below 10 parts per million (ppm) to around 200 ppm as temperature increased from 295 K to 1570 K. The quantitative measurement was applied to an experimental investigation of NH3 combustion process. The concentrations of NH3 and nitric oxide (NO) in the post flame zone of NH3–methane (CH4)–air premixed flames at different equivalence ratios were measured.


2006 ◽  
Vol 125 (16) ◽  
pp. 161102 ◽  
Author(s):  
Ion Cohanoschi ◽  
Kevin D. Belfield ◽  
Carlos Toro ◽  
Florencio E. Hernández

Sign in / Sign up

Export Citation Format

Share Document