scholarly journals GRAVITATIONALLY DISTORTED P-CYGNI PROFILES FROM OUTFLOWS NEAR COMPACT OBJECTS

2008 ◽  
Vol 17 (10) ◽  
pp. 1743-1749
Author(s):  
A. V. DORODNITSYN

Spectral line profiles produced in an outflow near a neutron star or a black hole can be strongly influenced by gravitational redshifting and by Doppler shifting due to a global motion of plasma. We consider a scenario in which a resonant absorption in a spectral line takes place in the outflowing plasma within several tens of Schwarzschild radii from a compact object. The main goal of this work is to show that under certain conditions a combination of the gravitational redshifting and Doppler blue/redshifting may produce line profiles which can be considered as "fingerprints" of the gravitational field of the compact object, much as P-Cygni profiles are "fingerprints" of stellar winds.

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Gert Hütsi ◽  
Tomi Koivisto ◽  
Martti Raidal ◽  
Ville Vaskonen ◽  
Hardi Veermäe

AbstractWe show that the physical conditions which induce the Thakurta metric, recently studied by Bœhm et al. in the context of time-dependent black hole masses, correspond to a single accreting compact object in the entire Universe filled with isotropic non-interacting dust. In such a case, accretion physics is not local but tied to the properties of the whole Universe. We show that radiation, primordial black holes or particle dark matter cannot produce the specific energy flux required for supporting the mass growth of the compact objects described by the Thakurta metric. In particular, this solution does not apply to black hole binaries. We conclude that compact dark matter candidates and their mass growth cannot be described by the Thakurta metric, and thus existing constraints on the primordial black hole abundance from the LIGO-Virgo and the CMB measurements remain valid.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
Shahar Hod

AbstractThe hoop conjecture, introduced by Thorne almost five decades ago, asserts that black holes are characterized by the mass-to-circumference relation $$4\pi {\mathcal {M}}/{\mathcal {C}}\ge 1$$ 4 π M / C ≥ 1 , whereas horizonless compact objects are characterized by the opposite inequality $$4\pi {\mathcal {M}}/{\mathcal {C}}<1$$ 4 π M / C < 1 (here $${\mathcal {C}}$$ C is the circumference of the smallest ring that can engulf the self-gravitating compact object in all azimuthal directions). It has recently been proved that a necessary condition for the validity of this conjecture in horizonless spacetimes of spatially regular charged compact objects is that the mass $${\mathcal {M}}$$ M be interpreted as the mass contained within the engulfing sphere (and not as the asymptotically measured total ADM mass). In the present paper we raise the following physically intriguing question: is it possible to formulate a unified version of the hoop conjecture which is valid for both black holes and horizonless compact objects? In order to address this important question, we analyze the behavior of the mass-to-circumference ratio of Kerr–Newman black holes. We explicitly prove that if the mass $${\mathcal {M}}$$ M in the hoop relation is interpreted as the quasilocal Einstein–Landau–Lifshitz–Papapetrou and Weinberg mass contained within the black-hole horizon, then these charged and spinning black holes are characterized by the sub-critical mass-to-circumference ratio $$4\pi {\mathcal {M}}/{\mathcal {C}}<1$$ 4 π M / C < 1 . Our results provide evidence for the non-existence of a unified version of the hoop conjecture which is valid for both black-hole spacetimes and spatially regular horizonless compact objects.


Universe ◽  
2020 ◽  
Vol 6 (12) ◽  
pp. 231
Author(s):  
Kilar Zhang ◽  
Feng-Li Lin

Motivated by the recent discoveries of compact objects from LIGO/Virgo observations, we study the possibility of identifying some of these objects as compact stars made of dark matter called dark stars, or the mix of dark and nuclear matters called hybrid stars. In particular, in GW190814, a new compact object with 2.6 M⊙ is reported. This could be the lightest black hole, the heaviest neutron star, and a dark or hybrid star. In this work, we extend the discussion on the interpretations of the recent LIGO/Virgo events as hybrid stars made of various self-interacting dark matter (SIDM) in the isotropic limit. We pay particular attention to the saddle instability of the hybrid stars which will constrain the possible SIDM models.


Author(s):  
V. Zhdanov ◽  
E. Fedorova ◽  
M. Khelashvili

The line profiles like that of the fluorescent Fe K or Co K lines in the X-ray spectra of the active galactic nuclei (AGN) reflect characteristics of the central regions of these objects. These lines can be formed in the accretion disks around central supermassive black holes and their shapes are connected with the central black hole spin and the accretion disk inclination angle to the line-of-the-sight. If an AGN is a source of a gravitational lens system with microlensing events, one can get an additional important information about both the accretion disk parameters and gravitational lens parameters as well. Microlensing processes were observed in such gravitational lens systems, as PKS 1830-211, B0218+357, RX J1131-1231 i HE1104-1805, Q2237+0305 and we can suspect to observe there also the spectral appearances of microlensing. Here we performed the numerical simulations of the microlensed relativistic spectral line profiles formed in the AGN accretion disks. Using the inear caustic model we show that the time dependence of the profile is determined essentially by the angle between to the disk axis and the caustic. This gives us an opportunity to assess this orientation. Microlens caustics magnify some parts of the accretion disk more prominently than others. Due to the Doppler effects and differences in the rotation direction this leads to the frequency-dependent magnification which distorts the profile of a relativistic spectral line. Such deformations are variable with time due to relative motions of the source and the microlens, and they can give us possibility to obtain some additional information about the disk brightness profile and caustic orientation relatively to the disk. Here we consider the thin disk model, Schwarzschild black hole, and the linear caustic approximation as well. The numerical simulations of the relativistic emission line profiles distorted by strong gravitational microlensing effect were performed for several different orientations of the linear caustic relatively to the disk, as well as several inclinations of the disk to the line-of-the-sight. Basic presumptions for the numerical modeling were the following: (a) AGN is a source in the gravitational lens system and it its inner parts the luminescent emission lines with relativistic profiles are being emitted; (b) this line is formed in the thin accretion disk quite far away from the central black hole and can be calculated with no taking into account the relativistic effects; (c) the caustic can be considered as a linear one. We show that the relative orientation of the caustic and the disk can be determined from emission lines profiles. Our numerical simulations demonstrate that the difference between profiles corresponding to different caustic orientations appears to be more prominent during the first half of the strong microlensing event, namely, before the crossing the disk center, and this dependence is irrespective to the accretion disk brightness profile. We show that for the spectral accuracy level high enough we have a perspective to determine the caustic orientation from the observational data.


2016 ◽  
Vol 25 (09) ◽  
pp. 1641001
Author(s):  
Paolo Pani ◽  
Leonardo Gualtieri ◽  
Andrea Maselli ◽  
Valeria Ferrari

We review recent work on the theory of tidal deformability and the tidal Love numbers of a slowly spinning compact object within general relativity. Angular momentum introduces couplings between distortions of different parity and new classes of spin-induced, tidal Love numbers emerge. Due to spin-tidal effects, a rotating object immersed in a quadrupolar, electric tidal field can acquire some induced mass, spin, quadrupole, octupole and hexadecapole moments to second-order in the spin. The tidal Love numbers depend strongly on the object’s internal structure. All tidal Love numbers of a Kerr black hole (BH) were proved to be exactly zero to first-order in the spin and also to second-order in the spin, at least in the axisymmetric case. For a binary system close to the merger, various components of the tidal field become relevant. Preliminary results suggest that spin-tidal couplings can introduce important corrections to the gravitational waveforms of spinning neutron star (NS) binaries approaching the merger.


2014 ◽  
Vol 54 (3) ◽  
pp. 254-258
Author(s):  
Zdenek Stuchlik ◽  
Jan Schee

We investigate possible signatures of a Kerr naked singularity (superspinar) in various observational phenomena. It has been shown that Kerr naked singularities (superspinars) have to be efficiently converted to a black hole due to accretion from Keplerian discs. In the final stages of the conversion process the near-extreme Kerr naked singularities (superspinars) provide a variety of extraordinary physical phenomena. Such superspinning Kerr geometries can serve as an efficient accelerator for extremely high-energy collisions, enabling a direct and clear demonstration of the outcomes of the collision processes. We shall discuss the efficiency and the visibility of the ultra-highenergy collisions in the deepest parts of the gravitational well of superspinning near-extreme Kerr geometries for the whole variety of particles freely falling from infinity. We demonstrate that ultrahigh-energy processes can be obtained with no fine tuning of the motion constants and the products of<br />the collision can escape to infinity with efficiency substantially higher than in the case of near-extreme black holes. Such phenomena influence the radiative processes taking place in the accretion disc, and together with the particular generated geometry they influence the observed radiation field. Here we<br />assume the “geometrical” influence of a Kerr naked singularity on the spectral line profiles of radiation emitted by monochromatically and isotropically radiating point sources forming a Keplerian ring or disc around such a compact object. We have found that the profiled spectral line of the radiating<br />Keplerian ring can be split into two parts because there is no event horizon in the naked singularity spacetimes. The profiled lines generated by Keplerian discs are qualitatively different for a Kerr naked singularity and black hole spacetimes broadened near the inner edge of a Keplerian disc.


2021 ◽  
Author(s):  
Dheeraj Pasham ◽  
Wynn Ho ◽  
William Alston ◽  
Ronald Remillard ◽  
Mason Ng ◽  
...  

Abstract Fast Blue Optical Transients (FBOTs) are mysterious extragalactic explosions that may represent a new class of astrophysical phenomena. Their fast time to maximum brightness of less than 10 days and decline over less than 2 months and unusual optical spectra and evolution are difficult to explain within the context of core-collapse of massive stars which are powered by radioactive decay of Nickel-56 and evolve slowly on months timescales. AT2018cow (at a redshift of 0.014) is an extreme FBOT both in terms of rapid evolution and high X-ray and bolometric luminosities. Several alternative hypotheses have been proposed to explain its unusual properties. These include shock interactions with dense circumstellar medium, tidal disruption of a star by a 10,000−million solar mass black hole, failed supernova with fallback accretion onto a newborn black hole, neutron star formed in a supernova or from merging compact objects, etc. Here, we present evidence for a high-amplitude (fractional root-mean-squared amplitude of>30%) quasi-periodic oscillation (QPO) of AT2018cow’s soft X-rays with a centroid frequency of roughly 225 Hz (statistically significant at the 3.7-sigma level, or a false alarm probability of 0.02%). This signal is found in the average power density spectrum of data taken over the entire outburst lasting roughly 60 days and thus suggests that the signal is highly persistent over several hundreds of millions of cycles (60 daysx225 Hz). This high frequency (rapid timescale) of 225 Hz (4.4 ms) argues for the presence of a compact object in AT2018cow which can either be a neutron star or a black hole, and disfavors circumstellar medium interactions for the origin of X-ray emission. Also, the QPO’s timescale sets an upper limit on the compact object's mass to be 850 solar masses, and thus disfavors models with a heavier black hole. If the QPO represents the spin period of a neutron star we can set upper limits on its magnetic field under different scenarios. This work highlights a new way of using high time-resolution X-ray observations to study FBOTs.


2004 ◽  
Vol 194 ◽  
pp. 214-214
Author(s):  
Dawn M. Gelino

Low-mass X-ray binaries (LMXBs) contain compact, black hole (BH) or neutron star (NS) primaries, and cool, low-mass secondary stars. We measure the orbital inclination of the system in quiescence by modeling infrared (IR) ellipsoidal variations from the secondary star in order to determine the compact object mass. I present our results for a few LMXBs, including the first BH that appears to conclusively fall in the 3-5 M⊙ range.


2005 ◽  
Vol 20 (11) ◽  
pp. 2321-2325 ◽  
Author(s):  
A. F. ZAKHAROV

In the article we review observational features of black holes where an influence of a gravitational field is dominant and we must use strong gravitational field approach for GR. Recent X-ray observations of microquasars and Seyfert galaxies reveal broad emission lines in their spectra, which can arise in the innermost parts of accretion disks. Simulations indicate that at low inclination angle the line is measured by a distant observer as characteristic two-peak profile. However, at high inclination angles (> 85°) two additional peaks arise. This phenomenon was discovered by Matt et al. (1993) using the Schwarzschild black hole metric to analyze such an effect. They assumed that the effect is applicable to a Kerr metric far beyond the range of parameters that they exploited. We check and confirm their hypothesis about such a structure of the spectral line shape for the Kerr metric case. We discuss how analysis of the iron spectral line shapes could give an information about an upper limit of magnetic field near black hole horizon.


Sign in / Sign up

Export Citation Format

Share Document