produce line
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 5)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Mathias Sablé-Meyer ◽  
Kevin Ellis ◽  
Joshua Tenenbaum ◽  
Stanislas Dehaene

Why do geometric shapes such as lines, circles, zig-zags or spirals appear in all human cultures, but are never produced by other animals? Here, we formalize and test the hypothesis that all humans possess a compositional language of thought that can produce line drawings as recursive combinations of a minimal set of geometric primitives. We present a programming language, similar to Logo, that combines discrete numbers and continuous integration in higher-level structures based on repetition, concatenation and embedding, and show that the simplest programs in this language generate the fundamental geometric shapes observed in human cultures. On the perceptual side, we propose that shape perception in humans involves searching for the shortest program that correctly draws the image (program induction). A consequence of this framework is that the mental difficulty of remembering a shape should depend on its minimum description length (MDL) in the proposed language. In two experiments, we show that encoding and processing of geometric shapes is well predicted by MDL. Furthermore, our hypotheses predict additive laws for the psychological complexity of repeated, concatenated or embedded shapes, which are experimentally validated.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0258376
Author(s):  
Heping Sheng ◽  
John Wilder ◽  
Dirk B. Walther

We often take people’s ability to understand and produce line drawings for granted. But where should we draw lines, and why? We address psychological principles that underlie efficient representations of complex information in line drawings. First, 58 participants with varying degree of artistic experience produced multiple drawings of a small set of scenes by tracing contours on a digital tablet. Second, 37 independent observers ranked the drawings by how representative they are of the original photograph. Matching contours between drawings of the same scene revealed that the most consistently drawn contours tend to be drawn earlier. We generated half-images with the most- versus least-consistently drawn contours and asked 25 observers categorize the quickly presented scenes. Observers performed significantly better for the most compared to the least consistent half-images. The most consistently drawn contours were more likely to depict occlusion boundaries, whereas the least consistently drawn contours frequently depicted surface normals.


2021 ◽  
Author(s):  
Heping Sheng ◽  
John Wilder ◽  
Dirk B. Walther

Abstract We often take people’s ability to understand and produce line drawings for granted. But where should we draw lines, and why? We address fundamental principles that underlie efficient representations of complex information in line drawings. First, 58 participants with varying degree of artistic experience produced multiple drawings of a small set of scenes by tracing contours on a digital tablet. Second, 37 independent observers ranked the drawings by how representative they are of the original photograph. Overall, artists’ drawings ranked higher than non-artists’. Matching contours between drawings of the same scene revealed that the most consistently drawn contours tend to be drawn earlier. We generated half-images with the most-versus least-consistently drawn contours by sorting contours by their consistency scores. Twenty five observers performed significantly better in a fast scene categorization task for the most compared to the least consistent half-images. The most consistent contours were longer and more likely to depict occlusion boundaries. Using psychophysics experiments and computational analysis, we confirmed quantitatively what makes certain contours in line drawings special: longer contours mark occlusion boundaries and aid rapid scene recognition. They allow artist and non-artists to convey important information starting from the first few strokes in their drawing process.


2020 ◽  
Vol 496 (2) ◽  
pp. 1262-1277 ◽  
Author(s):  
Xihan Ji ◽  
Renbin Yan ◽  
Rogério Riffel ◽  
Niv Drory ◽  
Kai Zhang

ABSTRACT The distribution of galaxies in optical diagnostic diagrams can provide information about their physical parameters when compared with ionization models under proper assumptions. By using a sample of central emitting regions from the Mapping Nearby Galaxies at Apache Point Observatory survey (MaNGA), we find evidence of the existence of upper boundaries for narrow-line regions (NLRs) of active galactic nuclei (AGNs) in optical Baldwin, Phillips & Terlevich (BPT) diagrams, especially in diagrams involving [S ii]λλ6716, 6731/Hα. Photoionization models can reproduce the boundaries well, as a consequence of the decrease of [S ii]λλ6716, 6731/Hα and [O iii]λ5007/Hβ ratios at very high metallicity. Whilst the exact location of the upper boundary in the [S ii] BPT diagram depends only weakly on the electron density of the ionized cloud and the secondary nitrogen prescription, its dependence on the shapes of the input spectral energy distributions (SEDs) is much stronger. This allows us to constrain the power-law index of the AGN SED between 1 Ryd and ∼100 Ryd to be less than or equal to −1.40 ± 0.05. The coverage of photoionization models in the [N ii] BPT diagram has a stronger dependence on the electron density and the secondary nitrogen prescription. With the density constrained by the [S ii] doublet ratio and the input SED constrained by the [S ii] BPT diagram, we find that the extent of the data in the [N ii] BPT diagram favours those prescriptions with high N/O ratios. Although shock-ionized clouds can produce line ratios similar to those from photoionization, the resulting shapes of the upper boundaries, if they exist, would likely be different from those of photoionizing origin.


2020 ◽  
Vol 495 (1) ◽  
pp. 905-931 ◽  
Author(s):  
A S G Robotham ◽  
S Bellstedt ◽  
C del P Lagos ◽  
J E Thorne ◽  
L J Davies ◽  
...  

ABSTRACT We introduce ProSpect, a generative galaxy spectral energy distribution (SED) package that encapsulates the best practices for SED methodologies in a number of astrophysical domains. ProSpect comes with two popular families of stellar population libraries (BC03 and EMILES), and a large variety of methods to construct star formation and metallicity histories. It models dust through the use of a Charlot & Fall attenuation model, with re-emission using Dale far-infrared templates. It also has the ability to model active galactic nucleus (AGN) through the inclusion of a simple AGN and hot torus model. Finally, it makes use of MAPPINGS-III photoionization tables to produce line emission features. We test the generative and inversion utility of ProSpect through application to the Shark galaxy formation semi-analytic code, and informed by these results produce fits to the final ultraviolet to far-infrared photometric catalogues produces by the Galaxy and Mass Assembly Survey. As part of the testing of ProSpect, we also produce a range of simple photometric stellar mass approximations covering a range of filters for both observed frame and rest-frame photometry.


2008 ◽  
Vol 17 (10) ◽  
pp. 1743-1749
Author(s):  
A. V. DORODNITSYN

Spectral line profiles produced in an outflow near a neutron star or a black hole can be strongly influenced by gravitational redshifting and by Doppler shifting due to a global motion of plasma. We consider a scenario in which a resonant absorption in a spectral line takes place in the outflowing plasma within several tens of Schwarzschild radii from a compact object. The main goal of this work is to show that under certain conditions a combination of the gravitational redshifting and Doppler blue/redshifting may produce line profiles which can be considered as "fingerprints" of the gravitational field of the compact object, much as P-Cygni profiles are "fingerprints" of stellar winds.


1999 ◽  
Vol 584 ◽  
Author(s):  
Hideo Namatsu ◽  
Toru Yamaguchi ◽  
Kenji Kurihara

AbstractOur research focuses on the line-edge roughness of resist patterns and how to reduce it in order to establish nanolithography as a practical tool. Commercially available e-beam resists exhibit a line-edge roughness of 3 nm (σ) or more. It is caused mainly by polymer aggregates in the resist. During development, they are extracted through dissolution of the surrounding polymer matrix. That is, the aggregates themselves dissolve more slowly than the surrounding matrix; and those that remain embedded in the resist produce line-edge roughness. To reduce the roughness, the effect of the aggregates must be suppressed. One way of doing this is to use a resist containing small aggregates. A good candidate is hydrogen silsesquioxane, which has a three-dimensional framework. Another way is to use a resist in which the aggregates are linked together, which makes them difficult to extract during development. A good example is an acrylate-type resist with a cross-linker mixed in.


1997 ◽  
Vol 07 (03n04) ◽  
pp. 117-133 ◽  
Author(s):  
T. Tadic ◽  
Y. Mokuno ◽  
Y. Horino ◽  
M. Jaksic

Numerical calculations of the effect of the finite dimensions and orientations of source and crystal are presented for plane and von Hamos Bragg crystal spectrometers for PIXE analysis, combined with a position sensitive (X-ray) detector. Analytical studies of all effects are provided. It is shown that some parameters can produce line shifts and asymmetries. A numerical model for an X-ray diffraction ray-tracing procedure for a crystal Bragg spectrometer is described.


Author(s):  
Daniel L. Callahan ◽  
H. M. Phillips ◽  
R. Sauerbrey

Excimer laser irradiation has been used to interferometrically ablate submicron line patterns on to Kapton polyimide. Such patterned material may exhibit highly anisotropic conduction as was predicted from previous studies showing enhanced conductivity from uniformly ablated material. We are currently exploiting this phenomenon to create integrated devices using conventional polymers as both dielectrics and conductors. Extensive scanning electron microscopy (SEM) and limited transmission electron microscopy (TEM) have been conducted in order to characterize the morphology of such patterned nanostructures as a function of processing conditions.The ablation technique employed produces an interference pattern on the polymer surface of period equal to half that of a diffraction grating period, independent of the laser wavelength. In these experiments, a 328 nm grating has been used to produce line patterns of 164 nm line-spacings as shown in Figures 1 and 2. A 200 Å Au coating has been used to both prevent charging and, perhaps more importantly, enhance contrast.


Sign in / Sign up

Export Citation Format

Share Document