scholarly journals AdS SEGMENT AND HIDDEN CONFORMAL SYMMETRY IN GENERAL NONEXTREMAL BLACK HOLES

2013 ◽  
Vol 22 (06) ◽  
pp. 1350029 ◽  
Author(s):  
HUIQUAN LI

It is demonstrated that the near-horizon geometry of general nonextremal black holes can be described by a portion of AdS space. We show that the reason why hidden conformal symmetries near horizons of general nonextremal black holes are achieved in previous works is that the near-horizon geometries have been equivalently taken as these AdS segments rather than simply the Rindler space.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Marina David ◽  
Jun Nian

Abstract We compute the Bekenstein-Hawking entropy of near-extremal asymptotically AdS4 electrically charged rotating black holes using three different methods: (i) from the gravity solution, (ii) from the near-horizon Kerr/CFT correspondence and (iii) from the boundary conformal field theory. The results from these three different approaches match exactly, giving us a unique and universal expression for the entropy and the microstate counting of near-extremal AdS black holes via the AdS/CFT correspondence. In the second method, we extend the Kerr/CFT correspondence to the near-extremal case to compute the left and right central charges. We also use hidden conformal symmetry of the near-horizon geometry to compute the Frolov-Thorne temperatures. From the results of the near-extremal AdS4 black hole entropy, we provide a microscopic foundation for Hawking radiation.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Daniel Flores-Alonso ◽  
Román Linares ◽  
Marco Maceda

Abstract Recent work has shown the existence of a unique nonlinear extension of electromagnetism which preserves conformal symmetry and allows for the freedom of duality rotations. Moreover, black holes and gravitational waves have been found to exist in this nonlinearly extended electrovacuum. We generalise these dyonic black holes in two major ways: with the relaxation of their horizon topology and with the inclusion of magnetic mass. Motivated by recent attention to traversable wormholes, we use this new family of Taub-NUT spaces to construct AdS wormholes. We explore some thermodynamic features by using a semi-classical approach. Our results show that a phase transition between the nut and bolt configurations arises in a similar way to the Maxwellian case.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2020 ◽  
Vol 80 (7) ◽  
Author(s):  
Tong-Tong Hu ◽  
Shuo Sun ◽  
Hong-Bo Li ◽  
Yong-Qiang Wang

Abstract Motivated by the recent studies of the novel asymptotically global $$\hbox {AdS}_4$$AdS4 black hole with deformed horizon, we consider the action of Einstein–Maxwell gravity in AdS spacetime and construct the charged deforming AdS black holes with differential boundary. In contrast to deforming black hole without charge, there exists at least one value of horizon for an arbitrary temperature. The extremum of temperature is determined by charge q and divides the range of temperature into several parts. Moreover, we use an isometric embedding in the three-dimensional space to investigate the horizon geometry. The entropy and quasinormal modes of deforming charged AdS black hole are also studied in this paper. Due to the existence of charge q, the phase diagram of entropy is more complicated. We consider two cases of solutions: (1) fixing the chemical potential $$\mu $$μ; (2) changing the value of $$\mu $$μ according to the values of horizon radius and charge. In the first case, it is interesting to find there exist two families of black hole solutions with different horizon radii for a fixed temperature, but these two black holes have same horizon geometry and entropy. The second case ensures that deforming charged AdS black hole solutions can reduce to standard RN–AdS black holes.


Universe ◽  
2020 ◽  
Vol 6 (9) ◽  
pp. 144
Author(s):  
Jan-Willem van Holten

This paper addresses the fate of extended space-time symmetries, in particular conformal symmetry and supersymmetry, in two-dimensional Rindler space-time appropriate to a uniformly accelerated non-inertial frame in flat 1+1-dimensional space-time. Generically, in addition to a conformal co-ordinate transformation, the transformation of fields from Minkowski to Rindler space is accompanied by local conformal and Lorentz transformations of the components, which also affect the Bogoliubov transformations between the associated Fock spaces. I construct these transformations for massless scalars and spinors, as well as for the ghost and super-ghost fields necessary in theories with local conformal and supersymmetries, as arising from coupling to two-dimensional (2-D) gravity or supergravity. Cancellation of the anomalies in Minkowski and in Rindler space requires theories with the well-known critical spectrum of particles that arise in string theory in the limit of infinite strings, and it is relevant for the equivalence of Minkowski and Rindler frame theories.


2019 ◽  
Vol 51 (11) ◽  
Author(s):  
M. F. A. R. Sakti ◽  
A. M. Ghezelbash ◽  
A. Suroso ◽  
F. P. Zen

2018 ◽  
Vol 97 (12) ◽  
Author(s):  
Jorge F. M. Delgado ◽  
Carlos A. R. Herdeiro ◽  
Eugen Radu

2011 ◽  
Vol 125 (1) ◽  
pp. 47-58
Author(s):  
Mohammad R. Setare ◽  
Vahid Kamali

Sign in / Sign up

Export Citation Format

Share Document